SUBJECT: Computational techniques for differential equations			
MASTER: Computational and Applied Mathematics	ECTS: 6	COURSE: 1	TERM: 1

	WEEKLY PLANNING					
	EK SESSION	STUDENT WORK DUP	TUDENT WORK DURING WEEK			
WEEK	SESSION	SESSION CONTENT	DESCRIPTION	LECTURE HOURS	STUDENT WORK (Max. 7h per week)	
1	1	 1. FINITE DIFFERENCE METHOD 1.1 Introduction to Finite Difference Approximations Deriving finite difference approximations; Truncation errors; 1.2 Finite Difference Methods for Steady States and Boundary Value Problems Finite differences for BVP; Local truncation error; Global error; 	Sections 1 & 2 [LeVeque]	1.66		
1	2	(*) Discussion of select exercises	(**) Problem solving for selected exercises	1.66	6.5	
2	3	1.2 Finite Difference Methods for Steady States and Boundary Value Problems Stability; Consistency; Convergence; L2 Stability; Boundary conditions; Existence and uniqueness	Section 2 [LeVeque]	1.66		
2	4	(*) Discussion of select exercises	(**) Problem solving for selected exercises	1.66	6.5	
3	5	1.3 Finite Difference Methods for Linear Elliptic Equations The 5-point stencil for the Laplacian; Ordering the unknowns and equations; Accuracy and stability; The 9-point Laplacian; Solving the linear system	Section 3 [LeVeque]	1.66		
3	6	Practice Assignment: Lab 1 (*) Discussion of select exercises	(**) Problem solving for selected exercises	1.66	6.5	
4	7	1.4 Finite Difference Methods for Diffusion Equations and Parabolic Problems Local truncation errors and order of accuracy; Method of lines discretizations; Stability theory; Stiffness of the heat equation; Convergence; Von Neumann analysis; Multidimensional problems; The locally one-dimensional method; Other discretizations	Section 9 [LeVeque]	1.66		
4	8	(*) Discussion of select exercises	(**) Problem solving for selected 1.66 exercises		6.5	

5	9	1.5 Finite difference methods for linear advection equation Advection; Method of lines discretization; The Lax-Wendroff method; Upwind methods; Von Neumann analysis; Characteristic tracing and interpolation; The Courant–Friedrichs–Lewy condition	Section 10 [LeVeque]	1.66	
5	10	Practice Assignment: Lab 2 (*) Discussion of select exercises	(**) Problem solving for selected exercises	1.66	6.5
6	11	2. THE FINITE ELEMENT METHOD IN 1D <u>Piecewise Polynomial Spaces</u> : Interpolation; L2-Projection; Computer Implementation <u>Two-point Boundary Value Problem</u> : Variational Formulation; Finite Element Approximation; Derivation of a Linear System of Equations; Basic Algorithm to Compute the Finite Element Solutio; A Priori Error Estimate.	Sections 1 & 2 [Larson&Bengzon]	1.66	
6	12	(*) Discussion of select exercises	(**) Problem solving for selected exercises	1.66	6.5
7	13	<u>Examples</u> : Stationary Heat Equation; Deformation of a Bar; Variable Coefficients <u>Computer Implementation</u> : Assembly of the Stiffness Matrix and Load Vector; A Finite Element Solver for a General Two-Point Boundary Value Problem <u>Adaptive Finite Element Methods</u> : A Posteriori Error Estimate; Adaptive Mesh Refinement	Section 2 [Larson&Bengzon]	1.66	
7	14	Practice Assignment: Lab 3 (*) Discussion of select exercises	(**) Problem solving for selected exercises	1.66	6.5
8	15	3. THE FINITE ELEMENT METHOD IN 2D <u>Piecewise Polynomial Approximation in 2D</u> : Meshes; Piecewise Polynomial Spaces; Interpolation; L2-Projection; Quadrature and Numerical Integration; Computer Implementation	Section 3 [Larson&Bengzon]	1.66	
8	16	(*) Discussion of select exercises	(**) Problem solving for selected exercises	1.66	6.5
9	17	<u>Green's Formula; The Finite Element Method for Poisson's Equation</u> : Poisson's Equation Variational Formulation; Finite Element Approximation; Derivation of a Linear System of Equations; Basic Algorithm to Compute the Finite Element Solution	Section 4 [Larson&Bengzon]	1.66	
9	18	(*) Discussion of select exercises	(**) Problem solving for selected exercises	1.66	6.5
10	19	<u>Basic Analysis of the Finite Element Method</u> : Existence and Uniqueness of the Finite Element Solution; A Priori Error Estimates; Properties of the Stiffness Matrix	Section 4 [Larson&Bengzon]	1.66	

		<u>Examples</u> : A Model Problem with Variable Coefficients; Dirichlet Problem; Neumann Problem; Eigenvalue Problem <u>Computer Implementation</u> : Assembly of the Stiffness Matrix; Assembling the Boundary Conditions <u>Adaptive Finite Element Methods</u> : A Posteriori Error Estimate; Adaptive Mesh Refinement			
10	20	Practice Assignment: Lab 4 (*) Discussion of select exercises	(**) Problem solving for selected exercises	1.66	6.5
11	21	4. SPECTRAL METHODS FOR PERIODIC PROBLEMS 4.1 Differentiation Matrices 4.2 Unbounded Grids: The Semi-Discrete Fourier Transform	Sections 1 & 2 [Trefethen]	1.66	
11	22	(*) Discussion of select exercises	(**) Problem solving for selected exercises	1.66	6.5
12	23	4.3 Periodic Grids: The DFT and FFT4.4 Smoothness and Spectral Accuracy	Sections 3 & 4 [Trefethen]	1.66	
12	24	(*) Discussion of select exercises	(**) Problem solving for selected exercises	1.66	6.5
13	25	5. SPECTRAL METHODS FOR NON PERIODIC PROBLEMS 5.1 Polynomial Interpolation and Clustered Grids 5.2 Chebyshev Differentiation Matrices	Sections 5 & 6 [Trefethen]	1.66	
13	26	(*) Discussion of select exercises	(**) Problem solving for selected exercises	1.66	6.5
14	27	5.3 Boundary Value Problems5.4 Time-dependent problems and stability regions	Sections 7 & 10 [Trefethen]	1.66	
14	28	Practice Assignment: Lab 5 (*) Discussion of select exercises	(**) Problem solving for selected exercises	1.66	6.5
SUBTOTAL				46.48+91=137.48	

15-17	27	Extra sessions, tutorials, etc Preparation for final exam		12.52
TOTAL				150

(*) Discussion from selected exercises from the course collection that correspond to the previous lecture.

(**) Problem solving for selected exercises from the course collection that correspond to the previous lecture.