

COURSE: POWER ELECTRONICS IN ENERGETICS SYSTEMS

DEGREE: BACHERLOR IN ENERGY ENGINEERING

YEAR: 3

TERM: 1

	WEEKLY PLANNING									
×	SE	DESCRIPTION	GROUPS		SPECIAL ROOM FOR SESSION	Indicate YES/NO If the	WEEKLY PROGRAMMING FOR STUDENT			
WEEK	SESSION		LECTURES	SECTIONS	(Computer classroom, audio-visual classroom)	session needs 2 teachers	DESCRIPTION	CLASS HOURS	HOMEWORK HOURS (Max. 7h week)	
1	1	Course introduction. Power Electronics applications in Energetic Systems 1. Micro-Grids 2. Power Electronics Loads 3. Power Quality Solutions 4. Transmission and Distribution (T&D) Applications		G		NO	Study of topics developed. Obtaining course materials	1,66	4,0	
1	2	Revision of basic electrical concepts and mathematical tools (I) 1. Instant value, average value, RMS values 2. Instant and average power 3. Periodic waveforms. Fourier Series and harmonics Quality factors for electrical transformations: Power factor, THD, Ripple factor	М		ONLINE	NO	Study of topics developed	1,66		
2	3	Revision of basic electrical concepts and mathematical tools (II) 1. Resistors 2. Inductors Transformers 3. Capacitors 4. Power balance. Steady—state operation. Transient operation 5. Filtering		G		NO	Study of topics developed	1,66	4,0	
2	4	 More exercises on basic electrical concepts and mathematical tools Calculation of the waveform, slope, peak, valley, peak to peak and average values of the inductor current in a switching circuit. Use of Fourier Series to calculate the RMS, THD and delivered power to and R-L load fed by quasi-square waveform (Phase shift modulation) 	М		ONLINE	NO	Study of topics developed	1,66		
3	5	DC-DC Converters (I) 1. Introduction to DC-DC converters 2. Buck Converter. Exercise. a. Blocks diagram of a converter: chopper, LC filter, and free-wheeling diode b. Equivalent circuits		G		NO	Study of topics developed	1,66	4,0	

		 c. Waveforms d. Obtaining the voltage and current DC conversion rations using Steady –State conditions. 							
3	6	DC-DC Converters (II) 1. Boost Converter. a. Waveforms b. Obtaining the voltage and current DC conversion rations using Steady –State conditions. 2. Exercise.	М		ONLINE	NO	Study of topics developed	1,66	
4	7	DC-DC Converters (III) 1. Full Bridge Converter. a. Waveforms b. Obtaining the voltage and current DC conversion rations using Steady –State conditions.		G		NO	Study of topics developed	1,66	
4	8	DC-DC Converters (IV) 1. Bidirectional Converter: Four-switch Buck-Boost Converter a. Waveforms b. Obtaining the voltage and current DC conversion rations using Steady –State conditions. 2. Exercise.	М		ONLINE	NO	Study of topics developed	1,66	4,0
5	9	Exercises of DC-DC converters Four-switch Buck-Boost Converter Simulation 1. Introduction to PSIM simulator 2. PWM modulator operation 3. Theoretical and simulated waveforms 4. Theoretical calculation and measurements on the simulated waveforms of the average and RMS values and current ripple.		G	Computer room	YES	Study of topics developed	1,66	
5	10	DC-AC Inverters (I) Introduction to DC-AC Inverters. Full-Bridge converter with R load. Four quadrants operation Square waveform modulation. Free Wheeling diodes Pros and cons of Square waveform modulation 3-Ph bridge square waveform operation Exercise: 1-Ph inverter with square waveform modulation and a RL load Exercise: 3-Ph inverter with square waveform operation and a RL load	М		ONLINE	NO	Study of topics developed	1,66	7,0
6	11	DC-AC Inverters (II) PWM modulation concept. Relationship between the pulse width (duty cycle) and the average value. Moving average concept. Modulating and carrier signals Relationship between the moving average of the output voltage and the modulating signal Unipolar sinusoidal PWM modulation. Definitions of the amplitude modulation index, ma, and the frequency modulation index, mf		G		NO	Study of topics developed	1,66	4,0

		 5. DC voltage gain 6. Harmonic content of the output voltage as a function of m_a and m_f 							
		7. Overmodulation and square waveform operation							
6	12	 DC-AC Inverters (III). 3-Ph inverters with PWM modulation Three Modulating signals DC voltage gain Harmonic content of the output voltage as a function of ma and mf Third-harmonic injection PWM Advanced topologies: Multilevel and Modular converters Multilevel converter with clamping diodes. Advantages regarding voltage levels and current THD. Modular converters. Series and parallel connections. Economy of Scale 	M		ONLINE	NO	Study of topics developed	1,66	
7	13	Phasor representation of 3-Ph inverters 1. Exercise: 3-Ph inverters with PWM modulation		G		NO	Study of topics developed	1,66	
7	14	AC-DC Converters (I) 1. Introduction to AC-DC converters. Diode. 2. Basic single-phase topologies: half-wave and full-wave rectifier. 3. Non-controlled single-phase full-wave rectifier with C filter: approximation to calculate the output voltage ripple.	М		ONLINE	NO	Study of topics developed	1,66	4,0
8	15	AC-DC Converters (II) 1. Non-controlled full-wave three-phase rectifier. 2. Non-controlled three-phase full-wave rectifier with C filter: approximation to calculate the output voltage ripple. 3. Non-Controlled three-phase rectifier with RL and RLC loads using infinite-L approximation.		G		NO	Study of topics developed	1,66	4,0
8	16	Exercises of AC-DC Converters 1. Single-phase and three-phase full wave rectifier with C filter. 2. Single-phase and three-phase full wave rectifier with inductive load.	М		ONLINE	NO	Study of topics developed	1,66	
9	17	Power Semiconductors and Power Losses 1. Main features 2. Power Losses 3. Diodes 4. MOSFET 5. IGBT 6. Basic losses calculation for IGBT 7. Basic losses calculation for inductors		G		NO	Study of topics developed	1,66	7,0
9	18	Exam I: Fundamentals, DC-DC, AD-DC and DC-AC converters 1. Description of Lab Session 1	М		ONLINE	NO	Study of topics developed	1,66	
10	19	Lab Session 1: DC-DC Converters The student will develop the experimental setup of a DC-DC converter. Open and closed loop measurements must be obtained Note: Laboratories of the Electronics Technology Department		G	Lab	YES	Study of topics developed	1,66	7,0

		Thermal management of power converters							
		Temperature effects in power converters							
	20	Thermal – electrical equivalence							
10		Main conduction thermal models	М		ONLINE	NO	Study of topics	1,66	
10	20	Natural convection and forced convection			ONLINE	140	developed	1,00	
		5. Heat-sink calculation (natural convection)							
		6. Heat-sink calculation (forced convection)							
		Fundamentals of dynamic modeling of switched converters							
		Steady-state operation, transient operation and small signal							
		Modeling of converters: injected-absorbed-current method					Study of topics		
11	21	Modelling of the other blocks of the feedback loop		G		NO	developed	1,66	
		Blocks diagram of the complete loop					4616.6664		
		Audiosusceptibility and Output impedance							
		Control loop design							
		Brief introduction to control and Bode diagram.							4,0
		2. Loop Stability							
		Phase margin and crossover frequency					Study of topics		
11	22	4. Phase Margin and Transient response	M		ONLINE	NO	developed	1,66	
		5. Requirements of the compensator transfer function							
		6. Type of regulators (PI, type 2 and type 3). Compensator design							
		7. Problem: Design of the control loop of a Buck converter							
		Exercises: Design of the control loop of a DC-DC converter							
	23	Modeling and design of the control loop of a DC-DC converter							
12		Buck Converter Power Stage and PWM Modulator		G	Computer	YES	Study of topics	1.66	
12		2. Simulate in PSIM the both converters under input voltage steps and load		G	room	YES	developed	1,66	
		steps.							
		3. Use different types of regulator (PI and type 3)							7,0
		Power converters for renewable energy applications							7,0
		Photovoltaic Systems							
12	24	2. Wind Power Systems	М		ONLINE	NO	Study of topics	1,66	
12	24	3. Active and reactive power exchange with the grid	IVI		ONLINE	NO	developed	1,00	
		4. Three-phase system							
		5. Space phasors and two-dimensional reference frame							
		Modeling and control of the current loop of a grid-tied three-phase inverter							
		1. Average model					Study of topics		
13	25	2. Small-signal model		G		NO	developed	1,66	
		3. Feed-forward compensations					acteropeu		
		4. PI compensator design							7,0
		Exam II: Power semiconductor, power losses, Thermal Management, modeling							.,0
		and control loop design of DC-DC converters					Study of topics		
13	26		M		ONLINE	NO	developed	1,66	
		Functional Blocks of the current loop of a grid-tied three-phase inverter (II)					developed		
		1. Power Stage							

									-
		2. Current Filtering and abc to dq Transformation							
		3. Voltage measurement, voltage re-scaling and abc to dq Transformation							
		4. PLL							
		5. Current References Generator							
		6. P and Q references steps							
		7. PI regulator and Feed-Forward compensations							
		8. PWM Modulator							
		9. Parameter File							
		10. Instant Active and Reactive Power Meters							
		Note : This session is connected with Lab Session 2. Models and PSIM blocks will be							
		given to students in order to help them to design the complete PV system							
		considered as Lab Session 2.							
		Lab Session 2: Grid-tied PV inverter			Computer		Study of topics		
14	27	To complement the contents of session 24, 25 & 26, the complete 3-ph grid-tied		G	room	YES	developed	1,66	
		inverter will be simulated by means of PSIM.			100111		uevelopeu		
		Main electrical protections in power converters							
		Overvoltage protection							
		a. Clamping Snubbers.							
		b. dV/dt Snubbers.							
		c. Diode Snubbers.							7,0
		d. IGBT Snubbers.					Study of topics		7,0
14	28	Overvoltage protection for the complete converter.	M		ONLINE	NO	developed	1,66	
		a. Metal-oxide varistors.					ucvcioped		
		b. Gas discharge tubes.							
		c. Other devices.							
		3. Overcurrent protection.							
		a. Active protection in power-electronics switching devices.							
		 Fuses and thermal-magnetic circuit breakers. 							