

COURSE TITLE: CLASSICAL ELECTRODYNAMICS

EUROPEAN MASTER OF SCIENCE IN NUCLEAR FUSION AND ENGINEERING PHYSICS	YEAR: 1 st	SEMESTER: 1 st

COU	COURSE SCHEDULE												
WEE K	SE- SSIO	DESCRIPTION OF THE CONTENTS	GROUP (Tick X)		GROUP (Tick X)		GROUP (Tick X)		CUP Indicate if a		STUDENT'S WEEKLY SCHEDULE		
	N		Lectur e Class	Practi cal Class	different from the classroom is required (laboratory, computer classroom, etc)	It is a session with two teachers (*)	DESCRIPTION	CLASS HOURS	HOMEWO RK HOURS Máximum 7 H				
1	1	 1. Electrostatics Electric field Electric charge Coulomb's law Electric field Continuous charge distributions Helmholtz's theorem Divergence of the electric field Divergence of the electric field. Gauss' law Gauss' law applications Curl of the electric field Curl of the electric field. Conservative property Electric potential The work done to move a charge Electrostatic energy 	x				 Reading of proposed topics Work on the subject, including bibliographic research 	1,5	7				
1	2	(*) Discussion of selected exercises		x			(**) Solution of proposed exercises	1,5					

2	3	 1 (cont.) Conductors * Basic properties * Systems of conductors. Capacitors Energy in electrostatics * The energy of a point charge distribution * The energy of a continuous charge distribution. Systems of conductors * Energy as a function of the electric field * Forces in a system of charges 	x		- Reading of proposed topics - Work on the subject, including bibliographic research	1,5	7
2	4	(*) Discussion of selected exercises		x	(**) Solution of proposed exercises	1,5	
3	5	 1 (cont.) Special methods in electrostatics Poisson and Laplace's equations Properties of the Laplace's equation. Linearity and uniqueness theorem The method of images Separation of variables 2. Electric fields in matter Multipole expansion. The electric dipole 	x		- Reading of proposed topics - Work on the subject, including bibliographic research	1,5	7
3	6	 - (*) Discussion of selected exercises - Discussion of applications (plasma physics and nuclear fusion) 		x	 - (**) Solution of proposed exercises - Reading of applications, bibliographic research 	1,5	
4	7	 2 (cont.) Polarization The field of a polarized object. Bound charges Gauss' law in the presence of dielectrics. The electric displacement Linear dielectrics. Susceptibility, permittivity, dielectric constant Boundary conditions Energy in dielectric systems. Forces 	х		 Reading of proposed topics Work on the subject, including bibliographic research 	1,5	7
4	8	- (*) Discussion of selected exercises		X	- (**) Solution of proposed exercises	1,5	

		- Discussion of applications (plasma physics and nuclear fusion)			- Reading of applications, bibliographic research		
5	9	 3 Magnetostatics Electric current Current distributions. Current density Continuity equation Ohm's law. Conductivity and resistivity Joule's law Magnetic forces Magnetic force on a moving charge. Cyclotron motion. Lorentz's force Magnetic force on a current carrying wire. Magnetic force on a current carrying wire. Magnetic force on volume and surface current distributions. Current element The magnetic field of a steady current Force between currents (Ampère's law) The Biot-Savart law. Examples Magnetic field due to volume and surface current distributions 	X		 Reading of proposed topics Work on the subject, including bibliographic research (**) Solution of proposed exercises 	1,5	7
5	10	- Written test exam		x	- Written test exam	1,5	
6	11	 3. (cont.) The divergence of B. Magnetic flux The curl of B * The curl of B. Ampère's law * Applications of Ampère's law Magnetic vector potential 4. Magnetic fields in matter Multipole expansion of the vector potential. The magnetic dipole 	x		- Reading of proposed topics - Work on the subject, including bibliographic research	1,5	7
6	12	 - (*) Discussion of selected exercises - Discussion of applications (plasma physics and nuclear fusion) 		x	 - (**) Solution of proposed exercises - Reading of applications, bibliographic research 	1,5	
7	13	4 (cont.) - Diamagnetism, paramagnetism,	Х		- Reading of proposed topics - Work on the subject, including	1,5	7

		 ferromagnetism Magnetization The magnetic field of a magnetized object. Bound currents Ampère's law in magnetized materials. The magnetic field H Linear and nonlinear media: * Magnetic susceptibility and permeability * Ferromagnetism. Hysteresis Boundary conditions Magnetic circuits Magnetic scalar potential 			bibliographic research		
7	14	 - (*) Discussion of selected exercises - Discussion of applications (plasma physics and nuclear fusion) 		x	- (**) Solution of proposed exercises - Reading of applications, bibliographi research	1,5	
8	15	 5. Electromagnetic induction Electromotive force Faraday's law of induction. Lenz's law Moving circuits. Motional electromotive force Stationary media. Induced electric field Mutual inductance and self-inductance Magnetic energy Magnetic energy for a system of current-carrying circuits Magnetic energy for steady current distributions Energy as a function of the magnetic field Losses due to hysteresis Magnetic forces 	x		- Reading of proposed topics - Work on the subject, including bibliographic research	1.5	7
8	16	- Written test exam		x	- Written test exam	1.5	
9	17	 6 Electromagnetic properties of superconductors - Introduction. Superconductivity. Critical temperature and critical magnetic field. Meissner effect. Type I and type II superconductors - Two descriptions for the magnetic state of superconductors: 	x		- Reading of proposed topics - Work on the subject, including bibliographic research	1,5	7

		 * Perfect diamagnetic material * Material with free surface current - London's equations. London penetration depth 					
9	18	 - (*) Discussion of selected exercises - Discussion of applications (plasma physics and nuclear fusion) 		x	 - (**) Solution of proposed exercises - Reading of applications, bibliographic research 	1,5	
10	19	 7. Maxwell's equations Generalized Ampères's law. Displacement current Maxwell's equations Maxwell's equations in matter Boundary conditions Conservation laws * Charge conservation. Continuity equation * Energy conservation. Poynting's theorem * Momentum conservation. Maxwell's stress tensor * Angular momentum 	x		- Reading of proposed topics - Work on the subject, including bibliographic research	1,5	7
10	20	 - (*) Discussion of selected exercises - Discussion of applications (plasma physics and nuclear fusion) 		x	 - (**) Solution of proposed exercises - Reading of applications, bibliographic research 	1,5	-
11	21	 8. Electromagnetic waves Electromagnetic waves in vacuum * The wave equation for E and B * Monochromatic plane waves * Energy and momentum in plane electromagnetic waves Electromagnetic waves in matter * Propagation in linear media * Reflection and transmission at normal incidence * Reflection and transmission at oblique incidence 	x		 Reading of proposed topics Work on the subject, including bibliographic research (**) Solution of proposed exercises 	1,5	7
11	22	- Written test exam		Х	- Written test exam	1,5	

12	23	 8. (cont.) Absorption and dispertion Electromagnetic waves in conductors Reflection at a conducting surface The frequency dependence of permittivity Guided waves Wave guides. Transverse electric (TE) and magnetic (TM) modes. TE waves in a rectangular wave guide Coaxial transmission line Resonant cavities 	x		 Reading of proposed topics Work on the subject, including bibliographic research 	1,5	7
12	24	 - (*) Discussion of selected exercises - Discussion of applications (plasma physics and nuclear fusion) 		x	 - (**) Solution of proposed exercises - Reading of applications, bibliographic research 	1,5	
13	25	 9. Potentials and fields Scalar and vector potentials Lorentz gauge and Coulomb gauge Wave equations for the potentials Retarded potentials Point charges Liénard-Wiechert potentials The fields of a moving point charge 	x		 Reading of proposed topics Work on the subject, including bibliographic research 	1,5	7
13	26	- (*) Discussion of selected exercises		х	- (**) Solution of proposed exercises	1,5	
14	27	 10. Radiation What is radiation ? Electric dipole radiation Magnetic dipole radiation Radiation from an arbitrary source Power radiated by a point charge 	x		 Reading of proposed topics Work on the subject, including bibliographic research (**) Solution of proposed exercises 	1,5	7
14	28	- Written test exam		х	- Written test exam	1,5	
SUBTO	DTAL					42 + 98	3 = 150
15		Support classes, delivery of proposed homework assignments, etc				5	5
TOTAL							150

- (*) Discussion of selected exercises from the course collection that correspond to the previous lecture
- (**) Problem solving for selected exercises from the course collection
- (***) Dates for topics of application to plasma physics and nuclear fusion sessions are tentative. They will be fixed in the beginning of the semester