Universidad
Carlos III de Madrid

COURSE TITLE: MECHANICS AND RELATIVITY		
BACHELOR IN ENINEERING PHYSICS	YEAR: $\mathbf{2}^{\text {nd }}$	SEMESTER: $1^{\text {ST }}$

COURSE SCHEDULE									
$\begin{gathered} \text { WEE } \\ \text { K } \end{gathered}$	$\begin{gathered} \text { SE- } \\ \text { SSIO } \\ \mathrm{N} \end{gathered}$	DESCRIPTION OF THE CONTENTS	$\begin{aligned} & \text { GROUP } \\ & \text { (Tick } \text {) } \\ & \hline \end{aligned}$		Indicate if a space different from the classroom is required (laboratory, computer classroom, etc)	Indicate YES/NO if It is a session with two teachers	STUDENT'S WEEKLY SCHEDULE		
			$\begin{aligned} & \text { Lectur } \\ & \text { e } \\ & \text { Class } \end{aligned}$	$\begin{aligned} & \text { Practi } \\ & \text { cal } \\ & \text { Class } \end{aligned}$			DESCRIPTION	CLASS HOURS	HOMEWO RK HOURS Máximum 7 H
1	1	1. Introduction to Analytical Mechanics - Introduction - Generalized Coordinates - Systems with Constraints - Kinetic Energy and Generalized Momenta * Generalized Velocity * Kinetic Energy * Generalized Momenta - Virtual and Real Displacements - Virtual Work. Generalized Forces * Virtual work * Generalized Forcs * Virtual Work and Forces of Constraint	X				- Reading of proposed topics - Work on the subject, including bibliographic research	1,66	5
1	2			X			- Solution of proposed exercises - Presentation of short proposed works - Participation in discussions and debates	1,66	
2	3	1 (cont.)	X				- Reading of proposed topics	1,66	5

		- Fields of Application of the Hamiltonian Mechanics - The Hamilton's Principle. Principle of Least Action							
4	8			X			- Solution of proposed exercises - Presentation of short proposed works - Participation in discussions and debates	1,66	
${ }^{5}$	9	4 Analytical Statics - The Principle of Virtual Work - D'Alembert's Principle	X				- Reading of proposed topics - Work on the subject, including bibliographic research	1,66	5
5	10			X			- Solution of proposed exercises - Presentation of short proposed works - Participation in discussions and debates	1,66	
${ }^{6}$	11	5 Introduction to the Rigid Body - Definition of the Rigid Body. Degrees of Freedom - General Motion of a Rigid Body in Space. Chasles Theorem - Angular Velocity of Rotation of a Rigid Body - Kinetic Energy. Köning's Theorem	X				- Reading of proposed topics - Work on the subject, including bibliographic research	1,66	5
6	12	- Written test exam (*)		X			- Written test exam - Solution of proposed exercises - Presentation of short proposed works - Participation in discussions and debates	1,66	
7	13	6. The Inertia Tensor - Rotational Kinetic Energy. Definition of the Inertia Tensor - Angular Momentum with respect to a Point * Angular Momentum * Relation between the Angular Momentum and the Rotational Kinetic Energy - Planar Motion - Properties of the Inertia Tensor - Principal Axes of Inertia * Principal Axes and Principal Moments of Inertia * Procedure to determine the Principal Axes and Moments	X				- Reading of proposed topics - Work on the subject, including bibliographic research	1,66	5

		* Principal Axes and Properties of Symmetry - The Ellipsoid of Inertia							
7	14			X			- Solution of proposed exercises - Presentation of short proposed works - Participation in discussions and debates	1,66	
8	15	7 Equations of Motion of a Rigid Body. Applications - Eulerian Angles * Translational and Rotational Coordinates. Eulerian Angles * Angular Velocity of Rotation as a function of the Eulerian Angles - Equations of Motion - Euler's Equations - Gyroscopic Motion	X				- Reading of proposed topics - Work on the subject, including bibliographic research	1.66	5
8	16			X			- Solution of proposed exercises - Presentation of short proposed works - Participation in discussions and debates	1.66	
9	17	8 Oscillations - Introduction - Formulation of the Problem - The Eigenvalue Equation. Normal Modes and Frequencies - Normal Coordinates - Summary of the Method	X				- Reading of proposed topics - Work on the subject, including bibliographic research	1,66	5
9	18	- Written test exam (*)		X			- Written test exam - Solution of proposed exercises - Presentation of short proposed works - Participation in discussions and debates	1,66	
10	19	8 (cont.)	X				- Reading of proposed topics - Work on the subject, including bibliographic research	1,66	5
10	20			X			- Solution of proposed exercises - Presentation of short proposed works - Participation in discussions and Debates	1,66	

(*) Test dates are tentative.
(**) Laboratory session dates are tentative.

