Contents for Statistics at the Bachelor in Biomedical Engineering (2022-2023)

Coordinating teacher: Ignacio Cascos

BLOCK 0: DESCRIPTIVE STATISTICS

0. Descriptive Statistics

- 0.1 Main definitions
 - Population, sample, and variable
 - Types of variables
- $0.2\,$ Frecuencies and their tables
- 0.3 Grouped data
- 0.4 Measuring the location of the data
 - Measuring central location: sample mean, median, mode,...
 - Quantiles (quartiles and percentiles)
- 0.5 Measuring the spread of the data
 - sample range, interquartile range, sample variance, standard deviation,...
- 0.6 Charts
 - Bar chart, pie chart, box plot, histogram, frequency polygon,...
- 0.7 Measuring the shape of the distribution of the data
- 0.8 Simulateneous description of two variables
 - Marginal and conditional distributions and statistical independence
 - Simple linear regression (ordinary least squares) and correlation

BLOCK I: PROBABILITY

1. Introduction to Probability

- 1.1 Introduction
- 1.2 Random phenomena
 - Events, operations with events and their properties
- 1.3 Definition of probability and properties

- Definition of probability
- Interpretations of the probability
- Elementary properties
- 1.4 Conditional probability
 - Independence between events
 - Definition of conditional probability
- 1.5 Bayes Theorem
 - Multiplication rule for probabilities
 - Total probability rule
 - Bayes Theorem

2. Random variables

- 2.1 Definition of random variable
- 2.2 Discrete random variables
 - Probability (mass) function
 - Distribution function of a discrete random variable

2.3 Continuous random variables

- Density (mass) function
- Distribution function of a continuous random variable
- 2.4 Characteristic features of a random variable
 - Central location parameters
 - Non-central location parameters
 - Scatter parameters
 - Shape parameters
- 2.5 Transformations of random variables

2.6 Random vectors

- Joint distribution
- Independence of random variables
- Mean vector and covariance matrix

3. Probability models

Discrete probability models

- 3.1 Binomial distribution
- 3.2 Poisson distribution

Continuous probability models

3.3 Normal distribution

- Central Limit Theorem (sample mean)
- 3.4 Models related with the Normal distribution
- 3.5 Multivariate normal distribution

BLOCK II: STATISTICAL INFERENCE

4. Parameter Estimation

- 4.1 Introduction and basic concepts
 - Sample, statistic, estimator, bias, variance, mean square error, consistency
- 4.2 Sampling distributions
 - Distribution of the sample mean
 - Distribution of the sample variance
 - Sampling distributions for normal populations
- 4.3 Maximum Likelihood Estimation
- 4.4 Properties of Maximum Likelihood Estimators (MLEs)
- $4.5\,$ Inference for MLEs
 - Introduction to Confidence Intervals and Hypothesis testing

5. Statistical Inference

- 5.1 Introduction
- 5.2 Confidence Interval on the mean of a normal population with unknown variance
 - Sampling size
- 5.3 Hypothesis testing
 - Generalities
 - Critical region, power, and *p*-value
 - Confidence Intervals and hypothesis tests
- 5.4 Particular tests for a single sample
 - Inference for the mean (proportion) in big samples
 - Inference for the mean of a normal population with unknown variance
 - Inference for the variance of normal populations
 - Inference based on the Maximum Likelihood Estimator
- $5.5\,$ Particular tests two samples
 - Inference for the mean difference: independent samples
 - Inference for the mean difference: paired data
 - Comparison of two variances

BLOCK III: APPLICATIONS

6. Statistical quality control

- $6.1\,$ Introduction to statistical process control
- 6.2 Variables charts, \overline{X} -chart
- $6.3\,$ Attributes charts, p and np charts

7. Linear Regression

- 7.1 Introduction
- 7.2 Simple linear regression
 - Least squares estimators
 - Inference in simple linear regression
 - Adequacy of the regression model
- 7.3 Multiple linear regression
 - Least squares estimators
 - Inference in multiple linear regression
 - Multicollinearity
 - Dummy variables
- 7.4 Comparison of three or more population means (ANOVA)