Contents for Statistics at the Bachelor in Energy Engineering (2021-2022)

Coordinating teacher: Ignacio Cascos

BLOCK 0: DESCRIPTIVE STATISTICS

0. Descriptive Statistics

- 0.1 Main definitions
 - Population, sample, and variable
 - Types of variables
- $0.2\,$ Frecuencies and their tables
- 0.3 Grouped data
- 0.4 Measuring the location of the data
 - Measuring central location: sample mean, median, mode,...
 - Quantiles (quartiles and percentiles)
- 0.5 Measuring the spread of the data
 - sample range, interquartile range, sample variance, standard deviation,...
- 0.6 Charts
 - Bar chart, pie chart, box plot, histogram, frequency polygon,...
- 0.7 Measuring the shape of the distribution of the data
- 0.8 Simulateneous description of two variables
 - Marginal and conditional distributions and statistical independence
 - Simple linear regression (ordinary least squares) and correlation
- 0.9 Time series

BLOCK I: PROBABILITY

1. Introduction to Probability

- 1.1 Introduction
- 1.2 Random phenomena
 - Events, operations with events and their properties

- 1.3 Definition of probability and properties
 - Definition of probability
 - Interpretations of the probability and elementary properties
- 1.4 Assessment of probabilities in practice
 - Equiprobability, Laplace rule, combinatorics
- 1.5 Conditional probability
 - Independence between events
 - Definition of conditional probability
- 1.6 Bayes Theorem
 - Total probability rule and Bayes Theorem

2. Random variables

- 2.1 Definition of random variable
- 2.2 Discrete random variables
 - Probability (mass) function
 - Cumulative distribution function of a discrete random variable
- 2.3 Continuous random variables
 - Density (mass) function
 - Cumulative distribution function of a continuous random variable
- 2.4 Characteristic features of a random variable
 - Location parameters
 - Scatter parameters
 - Shape parameters
- 2.5 Independence of random variables

BLOCK II: PARAMETRIC MODELS AND INFERENCE

3. Probability models

Discrete probability models

- 3.1 Binomial distribution
- 3.2 Geometric distribution
- 3.3 Poisson distribution

Continuous probability models

- 3.4 Uniform distribution
- 3.5 Exponential distribution
- 3.6 Normal distribution

- Central Limit Theorem

4. Statistical Inference

- 4.1 Introduction
- 4.2 Estimators and their distribution
 - Distribution of the sample mean
 - Sampling distributions for normal populations
- 4.3 Confidence Intervals
 - Sample size
- 4.4 Hypothesis testing
 - Generalities
 - Critical region and *p*-value
 - Confidence Intervals and hypothesis tests
- $4.5\,$ Particular tests for a single sample
 - Inference for the mean (proportion) in big samples
 - Inference for the mean of a normal population with unknown variance
 - Inference for the variance of normal populations
- 4.6 Comparison of two populations

BLOCK III: APPLICATIONS

5. Quality Control

- 5.1 Introduction, control charts
- 5.2 Variables charts, \overline{X} -chart
 - Capability and Process Capability Ratio
- 5.3 Attributes control charts, p and np charts

6. Linear Regression

- 6.1 Introduction
- 6.2 Simple linear regression
 - Least squares estimators
 - Inference in simple linear regression
 - Adequacy of the regression model
- 6.3 Multiple linear regression
 - Least squares estimators
 - Inference in multiple linear regression
 - Multicollinearity
 - Dummy variables