Contents for Statistics at the Bachelor in Biomedical Engineering (2019-2020)

Coordinating teacher: Ignacio Cascos

BLOCK I: PROBABILITY

- 1. Introduction to Probability
 - 1.1 Introduction
 - 1.2 Random phenomena
 - Events, operations with events and their properties
 - 1.3 Definition of probability and properties
 - Definition of probability
 - Interpretations of the probability and elementary properties
 - 1.4 Conditional probability
 - Independence between events
 - Definition of conditional probability
 - 1.5 Bayes Theorem
 - Total probability rule and Bayes Theorem

2. Random variables

- 2.1 Definition of random variable
- 2.2 Discrete random variables
 - Probability (mass) function
 - Distribution function of a discrete random variable
- 2.3 Continuous random variables
 - Density (mass) function
 - Distribution function of a continuous random variable
- 2.4 Characteristic features of a random variable
 - Location parameters
 - Scatter parameters
 - Shape parameters

- 2.5 Transformations of random variables
- 2.6 Random vectors
 - Joint distribution
 - Independence of random variables
 - Mean vector and covariance matrix

3. Probability models

Discrete probability models

- 3.1 Binomial distribution
- 3.2 Poisson distribution

Continuous probability models

- 3.3 Normal distribution
 - Central Limit Theorem (sample mean)
- 3.4 Models related with the Normal distribution
- 3.5 Multivariate normal distribution

BLOCK II: STATISTICAL INFERENCE

- 4. Parameter Estimation
 - 4.1 Introduction and basic concepts
 - Sample, statistic, estimator, bias, variance, mean square error, consistency
 - 4.2 Sampling distributions
 - Distribution of the sample mean
 - Distribution of the sample variance
 - Sampling distributions for normal populations
 - 4.3 Maximum Likelihood Estimation
 - 4.4 Properties of Maximum Likelihood Estimators (MLEs)
 - 4.5 Inference for MLEs
 - Introduction to Confidence Intervals and Hypothesis testing

5. Statistical Inference

- 5.1 Introduction
- 5.2 Confidence Interval on the mean of a normal population with unknown variance
 - Sampling size
- 5.3 Hypothesis testing

- Generalities
- Critical region, power, and p-value
- Confidence Intervals and hypothesis tests
- 5.4 Particular tests for a single sample
 - Inference for the mean (proportion) in big samples
 - Inference for the mean of a normal population with unknown variance
 - Inference for the variance of normal populations
 - Inference based on the Maximum Likelihood Estimator
- 5.5 Particular tests two samples
 - Inference for the mean difference: independent samples
 - Inference for the mean difference: paired data
 - Comparison of two variances

BLOCK III: REGRESSION

- 6. Linear Regression
 - 6.1 Introduction
 - 6.2 Simple linear regression
 - Least squares estimators
 - Inference in simple linear regression
 - Adequacy of the regression model
 - 6.3 Multiple linear regression
 - Least squares estimators
 - Inference in multiple linear regression
 - Multicollinearity
 - Dummy variables
 - 6.4 Comparison of three or more population means (ANOVA)