

COURSE: POWER ELECTRONICS IN ENERGETICS SYSTEMS

DEGREE: BACHERLOR IN ENERGY ENGINEERING

YEAR: 3

TERM: 1

	WEEKLY PLANNING									
	SE		GRC	OUPS	SPECIAL ROOM FOR SESSION	Indicate YES/NO	WEEKLY PROGRAM	IMING FOR	STUDENT	
WEEK	SESSION	DESCRIPTION	LECTURES	SECTIONS	(Computer classroom, audio-visual classroom)	If the session needs 2 teachers	DESCRIPTION	CLASS HOURS	HOMEWORK HOURS (Max. 7h week)	
1	1	Course introduction. Power Electronics applications in Energetic Systems 1. Micro-Grids 2. Power Electronics Loads 3. Power Quality Solutions 4. Transmission and Distribution (T&D) Applications		G		NO	Study of topics developed. Obtaining course materials	1,66	4,0	
1	2	 Revision of basic electrical concepts and mathematical tools (I) 1. Instant value, average value, RMS values 2. Instant and average power 3. Periodic waveforms. Fourier Series and harmonics Quality factors for electrical transformations: Power factor, THD, Ripple factor 	М		ONLINE	NO	Study of topics developed	1,66		
2	3	 Revision of basic electrical concepts and mathematical tools (II) 1. Resistors 2. Inductors Transformers 3. Capacitors 4. Power balance. Steady-state operation. Transient operation 5. Filtering 		G		NO	Study of topics developed	1,66	4,0	
2	4	 More exercises on basic electrical concepts and mathematical tools 1. Calculation of the waveform, slope, peak, valley, peak to peak and average values of the inductor current in a switching circuit. 2. Use of Fourier Series to calculate the RMS, THD and delivered power to and R-L load fed by quasi-square waveform (Phase shift modulation) 	М		ONLINE	NO	Study of topics developed	1,66		
3	5	 DC-DC Converters (I) Introduction to DC-DC converters Buck Converter. Exercise.		G		NO	Study of topics developed	1,66	4,0	

		c. Waveforms							
		 Obtaining the voltage and current DC conversion rations using Steady –State conditions. 							
3	6	 DC-DC Converters (II) Boost Converter. Waveforms Obtaining the voltage and current DC conversion rations using Steady –State conditions. Exercise. 	М		ONLINE	NO	Study of topics developed	1,66	
4	7	 DC-DC Converters (III) Full Bridge Converter.		G		NO	Study of topics developed	1,66	
4	8	 DC-DC Converters (IV) Bidirectional Converter: Four-switch Buck-Boost Converter	М		ONLINE	NO	Study of topics developed	1,66	4,0
5	9	 Exercises of DC-DC converters Four-switch Buck-Boost Converter Simulation 1. Introduction to PSIM simulator 2. PWM modulator operation 3. Theoretical and simulated waveforms 4. Theoretical calculation and measurements on the simulated waveforms of the average and RMS values and current ripple. 		G	Computer room	YES	Study of topics developed	1,66	
5	10	 DC-AC Inverters (I) 1. Introduction to DC-AC Inverters. Full-Bridge converter with R load. Four quadrants operation 2. Square waveform modulation. Free Wheeling diodes 3. Pros and cons of Square waveform modulation 4. 3-Ph bridge square waveform operation 5. Exercise: 1-Ph inverter with square waveform modulation and a RL load 6. Exercise: 3-Ph inverter with square waveform operation and a RL load 	М		ONLINE	NO	Study of topics developed	1,66	7,0
6	11	 DC-AC Inverters (II) PWM modulation concept. Relationship between the pulse width (duty cycle) and the average value. Moving average concept. Modulating and carrier signals Relationship between the moving average of the output voltage and the modulating signal Unipolar sinusoidal PWM modulation. Definitions of the amplitude modulation index, m_a, and the frequency modulation index, m_f 		G		NO	Study of topics developed	1,66	4,0

		E DC voltage gain		1	T]
		5. DC voltage gain							
		6. Harmonic content of the output voltage as a function of m _a and m _f							
		7. Overmodulation and square waveform operation							
		DC-AC Inverters (III). 3-Ph inverters with PWM modulation							
		1. Three Modulating signals							
		2. DC voltage gain							
6	10	3. Harmonic content of the output voltage as a function of m _a and m _f				NO	Study of topics	1.00	
6	12	4. Third-harmonic injection PWM	М		ONLINE	NO	developed	1,66	
		Advanced topologies: Multilevel and Modular converters							
		 Multilevel converter with clamping diodes. Advantages regarding voltage levels and surrect TUD 							
		levels and current THD.							
		2. Modular converters. Series and parallel connections. Economy of Scale					Church a fit and a		
7	13	Phasor representation of 3-Ph inverters		G		NO	Study of topics	1,66	
		1. Exercise: 3-Ph inverters with PWM modulation					developed		
		AC-DC Converters (I)							4.0
-		 Introduction to AC-DC converters. Diode. Device inclusion to activity by formation of full second sectors. 				NO	Study of topics	1.00	4,0
7	14	2. Basic single-phase topologies: half-wave and full-wave rectifier.	М		ONLINE	NO	developed	1,66	
		3. Non-controlled single-phase full-wave rectifier with C filter: approximation							
		to calculate the output voltage ripple.							
		AC-DC Converters (II) 1. Non-controlled full-wave three-phase rectifier.							
	15								
8		Non-controlled three-phase full-wave rectifier with C filter: approximation to coloude the autout up to a right.		G		NO	Study of topics	1,66	
		to calculate the output voltage ripple.					developed		4.0
		 Non-Controlled three-phase rectifier with RL and RLC loads using infinite-L approximation 				4,0			
		approximation. Exercises of AC-DC Converters							
8	10		М		ONLINE	NO	Study of topics	1.00	
ð	16	 Single-phase and three-phase full wave rectifier with C filter. Single phase and three phase full wave rectificantic is leader. 	IVI		UNLINE	NO	developed	1,66	
		2. Single-phase and three-phase full wave rectifier with inductive load.							
		Power Semiconductors and Power Losses							
		1. Main features							
		2. Power Losses							
9	17	3. Diodes		G NO	Study of topics	1,66			
		4. MOSFET					developed		7,0
		5. IGBT 6. Basic losses calculation for IGBT							-
		7. Basic losses calculation for inductors					Church af tanta-		
9	18	Exam I: Fundamentals, DC-DC, AD-DC and DC-AC converters	М		ONLINE	NO	Study of topics	1,66	
		1. Description of Lab Session 1					developed		
		Lab Session 1: DC-DC Converters					Church a fitte mi		
10	19	The student will develop the experimental setup of a DC-DC converter. Open		G	Lab YES	YES	YES Study of topics developed	1,66	7.0
		and closed loop measurements must be obtained							7,0
		Note: Laboratories of the Electronics Technology Department							

		Thermal management of power converters							1 1
10	20	 Temperature effects in power converters Thermal – electrical equivalence Main conduction thermal models Natural convection and forced convection Heat-sink calculation (natural convection) Heat-sink calculation (forced convection) 	м		ONLINE	NO	Study of topics developed	1,66	
11	21	 Fundamentals of dynamic modeling of switched converters Steady-state operation, transient operation and small signal Modeling of converters: injected-absorbed-current method Modelling of the other blocks of the feedback loop Blocks diagram of the complete loop Audiosusceptibility and Output impedance 		G		NO	Study of topics developed	1,66	
11	22	 Control loop design Brief introduction to control and Bode diagram. Loop Stability Phase margin and crossover frequency Phase Margin and Transient response Requirements of the compensator transfer function Type of regulators (PI, type 2 and type 3). Compensator design Problem: Design of the control loop of a Buck converter 	М		ONLINE	NO	Study of topics developed	1,66	4,0
12	23	 Exercises: Design of the control loop of a DC-DC converter Modeling and design of the control loop of a DC-DC converter Buck Converter Power Stage and PWM Modulator Simulate in PSIM the both converters under input voltage steps and load steps. Use different types of regulator (PI and type 3) 		G	Computer room	YES	Study of topics developed	1,66	7.0
12	24	 Power converters for renewable energy applications 1. Photovoltaic Systems 2. Wind Power Systems 3. Active and reactive power exchange with the grid 4. Three-phase system 5. Space phasors and two-dimensional reference frame 	М		ONLINE	NO	Study of topics developed	1,66	7,0
13	25	 Modeling and control of the current loop of a grid-tied three-phase inverter Average model Small-signal model Feed-forward compensations Pl compensator design 		G		NO	Study of topics developed	1,66	7,0
13	26	Exam II: Power semiconductor, power losses, Thermal Management, modeling and control loop design of DC-DC converters Functional Blocks of the current loop of a grid-tied three-phase inverter (II) 1. Power Stage	М		ONLINE	NO	Study of topics developed	1,66	7,0

		 Current Filtering and abc to dq Transformation Voltage measurement, voltage re-scaling and abc to dq Transformation PLL Current References Generator P and Q references steps PI regulator and Feed-Forward compensations PWM Modulator Parameter File 							
		10. Instant Active and Reactive Power Meters Note : This session is connected with Lab Session 2. Models and PSIM blocks will be given to students in order to help them to design the complete PV system considered as Lab Session 2.							
14	27	Lab Session 2: Grid-tied PV inverter To complement the contents of session 24, 25 & 26, the complete 3-ph grid-tied inverter will be simulated by means of PSIM.		G	Computer room	YES	Study of topics developed	1,66	
14	28	 Main electrical protections in power converters Overvoltage protection Clamping Snubbers. dV/dt Snubbers. Diode Snubbers. IGBT Snubbers. Overvoltage protection for the complete converter. Metal-oxide varistors. Gas discharge tubes. Other devices. Overcurrent protection. Active protection in power-electronics switching devices. Fuses and thermal-magnetic circuit breakers. 	Μ		ONLINE	NO	Study of topics developed	1,66	7,0