

## COURSE: TRANSPORT PHENOMENA IN BIOMEDICAL ENGINEERING (15547)

## **DEGREE: BIOMEDICAL ENGINEERING**

YEAR: 2021/2022

TERM: 1st Term

| -    | WEEKLY PLANNING |                                                                                                                                                         |                    |          |                                             |                                         |                                                                                                                                                                                                                                    |                |                                        |
|------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|---------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------|
| WEEK | SESSION         | DESCRIPTION                                                                                                                                             | GROUPS<br>(mark X) |          | SPECIAL<br>ROOM FOR<br>SESSION<br>(Computer | Indicate<br>YES/NO<br>If the<br>session | WEEKLY PROGRAMMING FOR STUDENT                                                                                                                                                                                                     |                |                                        |
|      | Ň               |                                                                                                                                                         | LECTURES           | SEMINARS | class room,<br>audio-visual<br>class room)  | needs 2<br>teachers                     | DESCRIPTION                                                                                                                                                                                                                        | CLASS<br>HOURS | HOMEWORK<br>HOURS<br>(Max. 7h<br>week) |
| 1    | 1               | Introduction to Transport in Biological Systems                                                                                                         | x                  |          |                                             | NO                                      | Introduction to Transport in Biological Systems, The Role<br>of Transport Processes in Biological Systems, Definition of<br>Transport Processes, Relative Importance of Convection<br>and Diffusion. Differential equation solving | 1,6            | 5                                      |
|      | 2               | LAB 1 - Fluids (Stoke's law) (G48) and LAB 2- Diffusion (G49)                                                                                           |                    | х        | LAB                                         | YES                                     | Experimental verification of stokes law and experiments to measure diffusion of particles in media                                                                                                                                 | 1,6            |                                        |
| 2    | 3               | Frames of reference, control volume, velocity, stream lines<br>Conservation relationships and fluid statics. Diffusion vs<br>convection. Peclet Number. | X                  |          |                                             | NO                                      | Fluid Kinematics, velocity fields, derivation of acceleration.<br>Viscosity and Types of Fluids. Conservation Relations and<br>Boundary Conditions, Fluid Statics (pg. 62-70).                                                     | 1,6            | 5                                      |
|      | 4               | LAB 2 - Fluids (Stoke's law) (G48) and LAB 1- Diffusion (G49)                                                                                           |                    | х        | LAB                                         | YES                                     | Experimental verification of stokes law and experiments to measure diffusion of particles in media                                                                                                                                 | 1,6            |                                        |
| 3    | 5               | Team Work on transport in biological systems in preparation for the Team's presentation.                                                                | x                  |          |                                             | YES                                     | Prepration of a Lecture (Biology, Physics, and Artificial Organs), One Problem to be solved by the class and two                                                                                                                   | 1,6            | 5                                      |

|   |    |                                                                                                                                                          |   |   |     | multiple Choice questions (to be included in the final                                                                                                                                                                            |     |   |
|---|----|----------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
|   |    |                                                                                                                                                          |   |   |     | exam)                                                                                                                                                                                                                             |     |   |
|   | 6  | Stress and momentum balance. Fluids, conservation of mass, conservation of momentum.                                                                     |   | X | NO  | Conservation Relations and Momentum Balances,<br>Conservation Relations and Boundary Conditions (pg. 55-<br>62)                                                                                                                   | 1,6 |   |
| 4 | 7  | Team Work on transport in biological systems in preparation for the Team's presentation                                                                  | x |   | YES | Preparation of a Lecture (Biology, Physics, and Artificial<br>Organs), One Problem to be solved by the class and two<br>multiple Choice questions (to be included in the final<br>exam)                                           | 1,6 | 5 |
|   | 8  | Laminar and turbulent flow. Pressure driven Flow                                                                                                         |   | X | NO  | Surface Tension, Constitutive Relations (pg. 70-79).<br>Laminar and Turbulent Flow (pg. 82-88). Application of<br>momentum balances(pg. 88-97)                                                                                    | 1,6 |   |
|   | 9  | Team Work on transport in biological systems in preparation for the Team's presentation                                                                  | X |   | YES | Preparation of a Lecture (Biology, Physics, and Artificial<br>Organs), One Problem to be solved by the class and two<br>multiple Choice questions (to be included in the final<br>exam)                                           | 1,6 | 5 |
| 5 | 10 | Conservation of Momentum in 3D. Navier Stokes Equation                                                                                                   |   | X | NO  | Conservation Relations for Fluid Transport, Dimensional<br>Analysis, and Scaling (pg. 120-136). Differential Form of<br>the Conservation of Momentum and Navier–Stokes in 3D<br>(pg. 120-136).                                    | 1,6 |   |
| 6 | 11 | Team Work on transport in biological systems in preparation for the Team's presentation                                                                  | x |   | YES | Preparation of a Lecture (Biology, Physics, and Artificial<br>Organs), One Problem to be solved by the class and two<br>multiple Choice questions (to be included in the final<br>exam)                                           | 1,6 | 5 |
| 0 | 12 | Low Reynolds flow around a sphere                                                                                                                        |   | X | NO  | Derivation of stoke's drag force for low Reynolds flow around a sphere.                                                                                                                                                           | 1,6 |   |
|   | 13 | Matlab applied to Stokes equation and to particle diffusion at different temperatures                                                                    | Х |   | YES | Matlab used to plot in 2D dynamically low Reynolds flow around a sphere. LAB 1 on Fluids                                                                                                                                          | 1,6 | 5 |
| 7 | 14 | Bernoulli's equation.                                                                                                                                    |   | x | NO  | Bernoulli's equation (pg. 177-187).                                                                                                                                                                                               | 1,6 |   |
| 8 | 15 | Questions regarding Mid Term Exam. Overview of fluids.<br>Matlab transport intro.                                                                        | X |   | NO  | Overview on pressure driven flow, stress, Stoke's equation<br>for Mid Term Exam . Matlab used for Monte Carlo<br>simulation to study diffusion. Diffusion as a Random Walk<br>(pg. 261-275).                                      | 1,6 | 5 |
|   | 16 | MID TERM EXAM                                                                                                                                            |   | X | YES | MID TERM EXAM                                                                                                                                                                                                                     | 1,6 |   |
| 9 | 17 | Matlab used for Monte Carlo simulation to study time-<br>dependent diffusion. Fick's law. Steady state and unsteady<br>state diffusion in one dimension. | x |   | NO  | Steady state and unsteady state diffusion in one<br>dimension Mass Transport in Biological Systems . Diffusion<br>and Convection (pg. 370-378). Conservation Relations for<br>Dilute Solutions, Mass Transfer Coefficients , Mass | 1,6 | 5 |

|    |    | То                                               | tal 1 (Hours of class | plus student h | omework hours be | etween weeks 1-14)                                                                                                                     | 114,8 |    |
|----|----|--------------------------------------------------|-----------------------|----------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------|----|
|    |    |                                                  |                       |                |                  | Subtotal 1                                                                                                                             | 44,8  | 70 |
| 14 | 28 | FINAL EXAM                                       |                       | x              | YES              | FINAL EXAM                                                                                                                             | 1,6   |    |
|    | 27 | Doubts for Final exam and overview of course     | X                     |                | NO               | Overview of course                                                                                                                     | 1,6   | 5  |
| 12 | 26 | TALK TEAM GI, TALK TEAM GLOMERULUS.              |                       | x              | NO               | VIDEO TEAM GI. VIDEO TEAM GLOMERULUS.                                                                                                  | 1,6   |    |
| 13 | 25 | Green's function and heat transport              | Х                     |                | NO               | Green's function and heat transport                                                                                                    | 1,6   | 5  |
| 12 | 24 | TALK TEAM VASCULAR . TALK TEAM HEMOGLOBIN        |                       | X              | NO               | VIDEO TEAM VASCULAR. VIDEO TEAM HEMOGLOBIN.                                                                                            | 1,6   |    |
| 12 | 23 | Steady and unsteady state conduction. Convection | x                     |                | NO               | Steady and Unsteady Heat Conduction (pg. 778-788).<br>Convective Heat Transfer (pg. 788-793)                                           | 1,6   | 5  |
| 11 | 22 | TALK TEAM JOINTS. TALK TEAM CARDIO.              |                       | X              | NO               | VIDEO TEAM JOINTS. VIDEO TEAM CARDIO.                                                                                                  | 1,6   |    |
| 11 | 21 | 1D Diffusion through a multilayer                | x                     |                | NO               | 1D Diffusion through a multilayer                                                                                                      | 1,6   | 5  |
| 10 | 20 | The Langevin equation.                           |                       | x              | NO               | The Langevin equation.                                                                                                                 | 1,6   |    |
| 10 | 19 | Matlab Analysis of data from LAB 2 Diffusion.    | X                     |                | YES              | Analysis of data from Lab 2, Diffusion.                                                                                                | 1,6   | 5  |
|    | 18 |                                                  |                       |                |                  | Estimation of Diffusion Coefficients in Solution (pg. 275-<br>287)                                                                     |       |    |
|    |    | Fick's law, conservation relations.              |                       | x              | YES              | Transfer Across Membranes: Application to Hemodialysis<br>(pg. 378-393)<br>Fick's law. Conservation Relations, Constitutive Relations, | 1,6   |    |

| 15                                                                              |  | Tutorials, handing in, etc |  |  |                   |  |            |   | 12 |
|---------------------------------------------------------------------------------|--|----------------------------|--|--|-------------------|--|------------|---|----|
| 16                                                                              |  |                            |  |  |                   |  |            |   |    |
| 17                                                                              |  | Assessment                 |  |  |                   |  |            | 4 |    |
| 18                                                                              |  |                            |  |  |                   |  |            |   |    |
|                                                                                 |  |                            |  |  |                   |  | Subtotal 2 | 3 |    |
| <b>Total 2</b> (Hours of class plus student homework hours between weeks 15-18) |  |                            |  |  | veen weeks 15-18) |  | 16         |   |    |

| 130,8 | 130,8 |
|-------|-------|
|-------|-------|