uc3m Universidad Carlos III de Madrid

COURSE: CALCULUS II

DEGREE: Bachelor in Data Science and Engineering and Telecommunication

ACADEMIC YEAR: 2024-2025 TERM: 2 **Technologies Engineering**

28 sessions along 14 weeks

	WEEKLY PLANNING								
WEEK	SESSION	DESCRIPTION	GROUPS (mark X)		WEEKLY PROGRAMMING FOR STUDENT				
WLLIX			LECTURES	SEMINARS	DESCRIPTION	CLASS HOURS	HOMEWORK HOURS (Max. 7h week)		
		CHAPTER 1: DIFFERENTIAL CALCULUS IN SEVERAL VARIABLES			Sections 1.5, 2.1, 2.2 [MT]				
1	1	 1.1 Rⁿ as an Euclidean space; topology 1.2 Functions of n variables Functions, graphs, and level sets 	X			1,67	6,3		
1	2	(*) Discussion of selected exercises		X	(**) Problem solving for selected exercises	1,67			
2	3	1.3 Limits and Continuity	Х		Section 2.2 [MT]	1,67			
2	4	(*) Discussion of selected exercises		X	(**) Problem solving for selected exercises	1,67	6,3		
3	5	1.4 Differentiability- Partial derivatives- Derivative; Jacobian matrix	Х		Section 2.3 [MT]	1,67	6,3		
3	6	(*) Discussion of selected exercises		Х	(**) Problem solving for selected exercises	1,67			
4	7	 Properties of the derivative Chain rule Directional derivatives; gradient vector 	Х		Sections 2.5, 2.6 [MT]	1,67	6,3		
4	8	(*) Discussion of selected exercises		Х	(**) Problem solving for selected	1,67			

uc3m | Universidad Carlos III de Madrid

					exercises		
5	9	CHAPTER 2: LOCAL PROPERTIES OF FUNCTIONS 2.1 Higher order derivatives - Iterated derivatives; equality of mixed partials - Differential operators: divergence, curl, Laplacian	Х		Sections 3.1, 3.2 [MT]	1,67	6,3
5	10	(*) Discussion of selected exercises		Х	(**) Problem solving for selected exercises	1,67	
6	11	 Taylor polynomial; Hessian matrix 2.2 Optimization Local extrema Absolute/global extrema 	Х		Sections 3.2, 3.3 [MT]	1,67	6,3
6	12	(*) Discussion of selected exercises		Х	(**) Problem solving for selected exercises	1,67	
7	13	 Free optimization problems Constrained optimization: Lagrange multipliers 	X		Section 3.3, 3.4 [MT]	1,67	6,3
7	14	(*) Discussion of selected exercises		Х	(**) Problem solving for selected exercises	1,67	
8	15	CHAPTER 3: INTEGRAL CALCULUS ON R ⁿ 3.1 Double and triple integrals - Iterated integrals - Cavalieri's principle - Integrals over rectangular regions; Fubini's theorem	Х		Sections 5.1-5.2 [MT]	1,67	6,3
8	16	First partial exam (*) Discussion of selected exercises		Х	(**) Problem solving for selected exercises	1,67	
9	17	 Arbitrary 2- and 3-dimensional regions Change in the order of integration 3.2 n-dimensional integrals 	Х		Sections 5.3-5.5 [MT]	1,67	6,3

uc3m Universidad Carlos III de Madrid

9	18	(*) Discussion of selected exercises		Х	(**) Problem solving for selected exercises	1,67	
10	19	 3.3 Changes of variables and applications Changes of variables; Jacobian Polar, cylindrical, and spherical coordinates Average; center of mass; moments of inertia 	X		Sections 6.1-6.3 [MT]	1,67	6,3
10	20	(*) Discussion of selected exercises		X	(**) Problem solving for selected exercises	1,67	
11	21	CHAPTER 4: INTEGRALS OVER CURVES AND SURFACES 4.1 Line integrals - Parametrized curves - Line integral - Conservative fields	X		Sections 7.1, 7.2 [MT]	1,67	6,3
11	22	(*) Discussion of selected exercises		X	(**) Problem solving for selected exercises	1,67	
12	23	 4.2 Surface integrals Parametrized surfaces Area of a Surface Integrals of scalar functions and vector fields 	Х		Sections 7.3-7.6 [MT]	1,67	6,3
12	24	Second partial exam (*) Discussion of selected exercises		Х	(**) Problem solving for selected exercises	1,67	
13	25	 4.3 Integral theorems of vector analysis Planar case: Green's and divergence theorems Stokes' theorem 	Х		Sections 8.1, 8.2 [MT]	1,67	6,3
13	26	(*) Discussion of selected exercises		Х	(**) Problem solving for selected exercises	1,67	
14	27	- Conservative fields	Χ		Sections 8.3, 8.4 [MT]	1,67	6,3

uc3m Universidad Carlos III de Madrid

		- Gauss' theorem						
14	28	(*) Discussion of selected exercises		X	(**) Problem solving for selected exercises	1,67	6,3	
		·				Subtotal 1	47	88
Total 1 (Hours of class plus student homework hours between weeks 1-14)					135			

		Subtotal 2	3	12
18				
17	Assessment, final exam preparation	3	10)
16				
15	Tutorials, handing-in, etc.		2	

	Total 2 (Hours of class plus student nomework hours between weeks 13-16)	15
TOTAL (Total 1 + Total 2. <u>Maximum 180 hours</u>)		150

Notes:

[MT] Marsden and Tromba, "Vector Calculus", W. H. Freeman (6th edition, 2012)

- (*) Discussion of selected exercises from the course collection that correspond to the previous lecture
- (**) Problem solving for selected exercises from the course collection and sections of [MT] that correspond to the previous lecture
- (+) Lecture hours are always 1.67 (1.67 hours*28 sessions = 46.76 hours)