COURSE NAME: Calculus II		
DEGREE: Engineering Physics	COURSE: 1	TERM: 2

SCHED	DULE							
WEEK	SE- SSION	SESSION CONTENT	GR (Ti	OUP ck X)		STUDENT WORK DURING WI	EEK	
			LARGE	SMALL		DESCRIPTION	LECTURE HOURS	STUDENT WORK Max 7 h per week
1	1	 CHAPTER 1: DIFFERENTIAL CALCULUS IN SEVERAL VARIABLES 1.1 Basic notions in Rⁿ 1.2 Functions of n variables 	1			Sections 15.1-15.3 and 15.5 [SHE] and/or sections 1.5, 2.1, 2.2 [MT]	1,66	
1	2	(*) Discussion of selected exercises		1		(**) Problem solving for selected exercises	1,66	6,5
2	3	1.3 Limits and Continuity	2			Section 15.6 [SHE] and/or section 2.2 [MT]	1,66	
2	4	(*) Discussion of selected exercises		2		(**) Problem solving for selected exercises	1,66	6,5
3	5	 1.4 Differentiability Partial derivatives Matrix of derivatives 	3			Sections 15.4, 16.1 [SHE] and/or section 2.3 [MT]	1,66	
3	6	(*) Discussion of selected exercises		3		(**) Problem solving for selected exercises	1,66	6,5
4	7	 Chain rule Directional derivatives; gradient vector 	4			Sections 16.2-16.4 [SHE] and/or sections 2.5, 2.6 [MT]	1,66	
4	8	(*) Discussion of selected exercises		4		(**) Problem solving for selected exercises	1,66	6,5
5	9	 CHAPTER 2: LOCAL PROPERTIES OF FUNCTIONS 2.1 Higher order derivatives and differential operators Iterated derivatives; equality of mixed partials Divergence, curl, Laplacian 	5			Sections 16.5, 18.8 [SHE] and/or sections 3.1, 4.3, 4.4 [MT]	1,66	
5	10	Midterm Exam 1 (*) Discussion of selected exercises		5		(**) Problem solving for selected exercises	1,66	6,5
6	11	 2.2 Optimization Local extrema Absolute/global extrema Free and constrained optimization problems 	6			Sections 16.5, 16.6, 16.7 [SHE] and/or sections 3.3, 3.4 [MT]	1,66	
6	12	(*) Discussion of selected exercises		6		(**) Problem solving for selected exercises	1,66	6,5

7	13	CHAPTER 3: INTEGRAL CALCULUS ON R ⁿ 3.1 Double integrals	7		Sections 17.1, 17.2 [SHE] and/or sections 5.1-5.2 [MT]	1,66	
		- Iterated integrals			[]		
		- Cavalieri's principle					
		- Integrals over rectangular regions; Fubini's					
		theorem					
7	14	(*) Discussion of selected exercises		7	(**) Problem solving for selected exercises	1,66	6,5
8	15	- More general regions	8		Sections 17.3, 17.5-17.7 [SHE] and/or sections 5.3-	1,66	
		- Change in the order of integration			5.5 [MT]		
		3.2 Triple integrals					
8	16	Midterm Exam 2		8	(**) Problem solving for selected exercises	1,66	6,5
		(*) Discussion of selected exercises					
9	17	3.3 Change of variables	9		Section 17.10 [SHE] and/or sections 6.1, 6.2 [MT]	1,66	
		 Change of variables; Jacobian 					
9	18	(*) Discussion of selected exercises		9	(**) Problem solving for selected exercises	1,66	6,5
10	19	 Polar, cylindrical, and spherical coordinates 	10		Sections 17.4, 17.8, 17.9 [SHE] and/or sections 6.2,	1,66	
		3.4 Applications			6.3 [MT]		
		 Average; center of mass; moments of inertia 					
10	20	(*) Discussion of selected exercises		10	(**) Problem solving for selected exercises	1,66	6,5
11	21	CHAPTER 4: INTEGRALS OVER CURVES AND SURFACES	11		Sections 18.1, 18.2, 18.4 [SHE] and/or sections 7.1,	1,66	
		4.1 Line and path integrals			7.2 [MT]		
		- Parametrized curves					
		- Path integral; line integral					
11	22	- Conservative fields		11		1.00	6.5
11	22	(*) Discussion of selected exercises		11	(**) Problem solving for selected exercises	1,66	0,5
12	23	4.2 Surface integrals	12		Sections 18.6-18.8 [SHE] and/or sections 7.3-7.6	1,66	
		 Parametrized surfaces 			[MT]		
		- Area of a surface					
		 Integrals of scalar functions and vector fields 					
12	24	Midterm Exam 3		12	(**) Problem solving for selected exercises	1,66	6,5
		(*) Discussion of selected exercises					
13	25	4.3 Integral theorems of vector analysis	13		Section 18.5, 18.10 [SHE] and/or sections 8.1,8.2	1,66	
		- Green's theorem			[MT]		
12	20	- Stokes' theorem		12		1.00	
13	26	(*) Discussion of selected exercises	14	13	(**) Problem solving for selected exercises	1,66	6,5
14	27	- Characterization of conservative fields	14		Section 18.8, 18.9 [SHE] and/or sections 8.3,8.4	1,00	
1.4	20	- Gauss' theorem		14		1.66	6 E
14	28	(*) Discussion of selected exercises		14	(**) Problem solving for selected exercises	1,00	0,5

SUBTOTAL							46.66 + 91 = 137,66	
15-17	Extra sessions, tutorials, etc.					Exam preparation		12.33 h
TOTAL				150				

[MT] Marsden and Tromba, "Vector Calculus", W. H. Freeman (5th edition, 2003) [SHE] Salas, Hille, and Etgen, "Calculus: one and several variables", Wiley (10th edition, 2007)

(*) Discussion of selected exercises from the course collection that correspond to the previous large-group lecture

(**) Problem solving for selected exercises from the course that correspond to the previous large-group lecture