

DENOMINACIÓN ASIGNATURA: ORDINARY DIFFERENTIAL EQUATIONS

DEGREE: APPLIED MATHEMATICS AND COMPUTING	YEAR: THIRD TERM: FIRST		

WEE SE-		DESCRIPTION OF THE CONTENT OF EACH	GRUPO		STUDENTS WORK DURING THE WEEK		
к	SSIO N	SESSION	THEORY GROUP	PROBLEM GROUP	DESCRIPTION OF THE MATERIAL TO BE STUDIED	HOURS OF LECTURES	STUDENTS WORK (MAX. 7 HOURS)
1	1	INTRODUCTION TO DIFFERENTIAL EQUATIONS NOTATION CLASSIFICATION OF ODES MODELIZATION 	x			1,6	6,5
1	2	(*) DISCUSSION OF SELECTED EXERCICES		x	(**) PROBLEMS SOLVING OF SELECTED EXERCICES	1,6	
2	3	MODELS OF ODES FIRST METHODS OF RESOLUTION. FIRST AND SECOND ORDER LINEAR EQUATIONS	x			1,6	6,5
2	4	(*) DISCUSSION OF SELECTED EXERCICES		x	(**) PROBLEMS SOLVING OF SELECTED EXERCICES	1,6	
3	5	WRONSKIAN. MEHTOD OF SEPARATION OF VAIRABLES. INDETERMINED COEFFICIENTS METHOD. POWER SERIES. APPLICATIONS	x			1,6	6,5
3	6	(*) DISCUSSION OF SELECTED EXERCICES		x	(**) PROBLEMS SOLVING OF SELECTED EXERCICES	1,6	
4	7	FUNDAMENTAL THEORY GRONWALL'S LEMMA PICARD'S THEOREM 	x			1,6	6,5
4	8	(*) DISCUSSION OF SELECTED EXERCICES		x	(**) PROBLEMS SOLVING OF SELECTED EXERCICES	1,6	

5	9	FUNDAMENTAL THEOREM	Х			1,6	6,5
		CAUCHY-PEANO'S THEOREM					
		CONTINUATION OF SOLUTIONS					
5	10	(*) DISCUSSION OF SELECTED EXERCICES		Х	(**) PROBLEMS SOLVING OF SELECTED EXERCICES	1,6	
6	11		X			1,6	6,5
		CONTRACTIVE MAP					
		CONTINUOUS DEPENDENCE					
		FIRST PARTIAL EVALUATION					
6	12	(*) DISCUSSION OF SELECTED EXERCICES		X	(**) PROBLEMS SOLVING OF SELECTED EXERCICES	1,6	
7	13	LINEAR SYTEMS OF ODES	Х			1,6	6,5
		CLASSIFICATION					
		FIRST METHODS OF RESOLUTION					
7	14	(*) DISCUSSION OF SELECTED EXERCICES		X	(**) PROBLEMS SOLVING OF SELECTED EXERCICES	1.6	
						-/-	
8	15	SOLUTION FOR LINEAR SYTEMS. SUBSTITUTION, ASSOCIATED	Х			1,6	6,5
		MATRIX, EXPONENTIAL OF A MATRIX. COMPLETE LINEAR SYSTEM.					
8	16	(*) DISCUSSION OF SELECTED EXERCICES		X	(**) PROBLEMS SOLVING OF SELECTED EXERCICES	1.6	-
					(,	-,-	
9	17	STABILITY AND INSTABILITY OF SOLUTIONS	Х			1,6	6,5
		PHASE PORTRAIT					
9	18	(*) DISCUSSION OF SELECTED EXERCICES		X	(**) PROBLEMS SOLVING OF SELECTED EXERCICES	1.6	
					(,	-,-	
10	19	ORBITS. AUTONOMOUS SYSTEMS. INVARIANT SETS. LIMITING	Х			1,6	6,5
10	20			V		1.6	-
10	20	() DISCUSSION OF SELECTED EXERCICES		^	() PROBLEWS SOLVING OF SELECTED EXERCICES	1,0	
11	21	INSTABILITY FROM THE LINEARIZATION OF THE PROBLEM	Х			1,6	6,5
						1.6	
11	22	(*) DISCUSSION OF SELECTED EXERCICES		X	(**) PROBLEMS SOLVING OF SELECTED EXERCICES	1,6	
12	23	LYAPUNOV FUNCTIONS.	Х			1,6	6,5
		GRADIENT/HAMILTONIANS/CONSERVATIVE SYSTEMS					
		SECOND MID TERM EXAM					
12	24	(*) DISCUSSION OF SELECTED EXFRCICES		X	(**) PROBLEMS SOLVING OF SEI FCTED EXERCICES	1.6	
				<u> </u>		-,-	
13	25	PERIODIC TRAJECTORIES	Х			1,6	6,5
13	26	(*) DISCUSSION OF SELECTED EXERCICES		х	(**) PROBLEMS SOLVING OF SELECTED EXERCICES	1,6	
1	1		1	1	1	1	

14	27	POINCARE-BE	NDIXON THEORY	Х			1,6	6,5
14	28	(*) DISCUSSIC	ON OF SELECTED EXERCICES		Х	(**) PROBLEMS SOLVING OF SELECTED EXERCICES	1,6	
47 (+) + 86 (++) = 133 hours								
15-17		EXTRA SESSIC	INS TUTORIALS PREPARATION FOR EXAMS			23hours		
13-17		LATINA SESSIO	NIS, TOTOMIALS, THEFAMATION FOR EARINS			25110013		
156 hours								

(*) Discussion of selected problems from the collection of them provided for the course

(**) Problems solving for selected exercices from the collection provided for course.

(+) Lectures hours are always 1.667 (1.667*28 sessions=46.68 hours)
 (++) Weekly hours of student self-study are always 6.16 (6.16*14 weeks=86.32 hours)