

COURSE: ADVANCED SEMICONDUCTOR LASERS (3 ECTS)							
MASTER: Master in Photonics Engineering	YEAR: 2020-2021	TERM: 2nd					

WEEKLY PLANNING								
SESSION	DESCRIPTION	GROUPS (mark X)		Special room for session (computer classroom,	WEEKLY PROGRAMMING FOR STUDENT			
		LECTURES	SEMINARS/ LAB ¹	classroom)	DESCRIPTION	CLASS HOURS	HOMEWORK HOURS	
1	INTRODUCTION of the subject. Review of semiconductor laser fundamentals I. p-n junctions. Gain in bulk and QWs. Vertical and lateral waveguides.	x			Introduction to the subject.	1,5		
2	Review of semiconductor laser fundamentals II. Fabry- Perot lasers. Threshold condition. Emission characteristics.	x			Previous reading and revision of class materials	1,5	4	
3	Single-frequency laser diodes I. Bragg Gratings. DBR lasers	x			Previous reading and revision of class materials.	1,5		
4	Single-frequency laser diodes II. Distribute feedback lasers	x			Previous reading and revision of class materials.	1,5	10	
5	Single-frequency laser diodes III. Discrete mode lasers.	x			Previous reading and revision of class materials.	1,5		

Total 1 (Hours of class plus student homework hours between weeks 1-7)						5
	¹ A maximum of 1-2 lab sessions			Subtotal 1	21	34
14	Applications of advanced semiconductor lasers. Performances and numerical examples		x	Selection of lasers for application examples and discussion	1,5	
13	High Power laser diodes II. Tapered lasers. Master Oscillator Power Amplifiers.	x		Presentation and discussion of the student's works.	1,5	
12	High Power laser diodes I. Broad Area Lasers. Laser bars. Laser stacks.	x		Previous reading and revision of class materials.	1,5	
11	Laboratory Session: Characterization of emission linewidth		x	The students will perform the measurements and compare them with theoretical predictions	1,5	
10	Narrow Linewidth lasers. Noise in laser diodes. Emission linewidth.	x		Previous reading and revision of class materials.	1,5	20
9	Laboratory Session: Characterization of emission linewidth		x	The students will perform the measurements and compare them with theoretical predictions	1,5	
8	Tunable laser diodes II. Multisection DBR lasers.	Х		Previous reading and revision of class materials.	1,5	
7	Tunable laser diodes I. External cavity lasers.	х		Previous reading and revision of class materials.	1,5	
6	Single-frequency laser diodes IV. Vertical Cavity Surface Emitting lasers.	x		Previous reading and revision of class materials.	1,5	

	Tutorials, handing in, etc			Solving any remaining question	10	
15	Assessment			Studying the documentation for the final assessment.	3	7
Subtotal 2			3	17		
Total 2 (Hours of class plus student homework hours at week 8)				20		

TOTAL (Total 1 + Total 2)