

COURSE: MATHEMATICS FOR DATA ANALYSIS

MASTER IN BIG DATA ANALYTICS

YEAR: 1

TERM: 1

WEEKLY PLANNING							
WEEK	DESCRIPTION		TYPE		NOTES		URS WEEKLY
WLLK	BESCRIPTION	LECTURE	PROBLEMS	EXAM	NOTES	CLASS	TOTAL
1	CHAPTER 1: LINEAR SYSTEMS Number sets Fundamental Theorem of Algebra Introduction to Linear Equations Geometrical Interpretation Existence and Uniqueness Matrix Notation Gaussian Elimination Row Equivalence and Echelon Forms Solving Linear Systems Homogeneous Systems Simultaneous Solving Linear Systems with parameters CHAPTER 2: VECTORS Vectors	x				3	6
2	CHAPTER 2: VECTORS Linear Combinations Subspace Spanned by Vectors Linear Subspace Column and Row Spaces The Matrix Equation Ax=b Null Space Revisiting Linear Systems Linear Independence Basis for a Linear Subspace Dimension of a Linear Subspace Basis for Col A, Row A and Nul A Rank of a Matrix	x				3	6
3	CHAPTER 2: VECTORS Coordinate Systems Introduction to Linear Transformations CHAPTER 3: MATRICES Matrix Operations Inverse of a Matrix The LU factorization Partitioned Matrices Determinants	х				3	6
4	CHAPTER 3: MATRICES Determinants CHAPTER 4: DIAGONALIZATION Eigenvalues & Eigenvectors Diagonalization	х				3	6
5	Change of Basis Transformations between Linear Subspaces Markov Processes CHAPTER 5: ORTHOGONALITY Dot Product and Modulus Orthogonal Sets Orthogonal Matrices Orthogonal Complement Orthogonal Projection	х				3	6
6	CHAPTER 5: ORTHOGONALITY The Gram-Schmidt Process The QR factorization Least-Squares Problems Linear Regressions Multiple Regressions CHAPTER 6: SYMMETRIC MATRICES Diagonalization of Symmetric Matrices Quadratic Forms Singular Value Decomposition Reduced SVD	x				3	6
7	CHAPTER 6: SYMMETRIC MATRICES Pseudoinverse of a Matrix Karhunen-Loève Expansion Condition Number Orthogonal Least-Squares Principal Component Analysis	х				3	6
8	EXAM			х		3	3
	Exam Preparation and Tutorials						30
	TOTAL HOURS:						75