

COURSE: Advanced Aeroelasticity

MASTER: Aerospace Engineering

TERM: 2nd

YEAR: 1st

La asignatura tiene 14 sesiones que se distribuyen a lo largo de 14 semanas.

	WEEKLY PLANNING								
WEEK	SESSION	DESCRIPTION		DUPS rk X)	SPECI AL ROOM FOR SESSI ON (Comp	Indic ate YES/ NO If the sessi	WEEKLY PROGRAMMING F	WEEKLY PROGRAMMING FOR STUDEN	
EK	ON		LECT URES	SEMI NARS	uter class room, audio- visual class room)	on need s 2 teac hers	DESCRIPTION	CLASS HOURS	HOME WORK HOURS (Max. 7h week)
1	1	 Advanced Aeroelasticity. Getting Started. → causes and the way to verify if this is the right cause. Present to the student a RCA fish-bone diagram and disregard some of the options like manufacturing quality etc. 	x				Reading corresponding notes chapters Study and personal work about the lecture. Perform Homework RCA.	1,6	2
2	2	 Environmental Vibration → RCA failed equipment analysis brainstorming. → Causes of the environmental vibration in an aircraft. Differential Diagnosis. → Measuring environmental vibration. Revisiting DSP. Aliasing, leakage, 	x				Reading corresponding notes chapters Study and personal work about the lecture. Perform Homework RCA.	1,6	3

		 → In lack of measurements: MIL-STD-810 & RTCA-DO-160 → Establishing Requirements for Environmental Vibration Qualification → Tracking equipment qualification test → 1 dof vibration equations → Engineering with only 1 dof: isolators → Root Cause Analysis (RCA): EVIS failure 					
3	3	 Powerplant Dynamics → RCA EVIS failure brainstorming → Powerplant dynamics issues. Differential diagnosis. → Sudden engine stoppage → Windmilling → Propeller dynamics. Propeller massbalance → Propeller blade dynamics → Root Cause Analysis (RCA): Blade rupture in a C-295 Portuguese aircraft 	x		Reading corresponding notes chapters Study and personal work about the lecture. Perform Homework RCA.	1,6	3
4	4	Impacts → RCA propeller rupture brainstorming → Causes of impacts in aircraft design. Differential diagnosis. → Impacts on aircraft caused by external impactor ■ Bird strike ■ Ice impacts ■ Ice impacts ■ Stones, runway debris → Impacts of the aircraft ■ Crashworthiness ■ WUL ■ Ditching → Ballistic limit. Some analytical formulas → 1 dof vibration equationsensitivity of a response to Δt → Root Cause Analysis (RCA): DASS flare ignition sequence.	x		Reading corresponding notes chapters Study and personal work about the lecture. Perform Homework RCA.	1,6	3
5	5	Getting started with MSC.NASTRAN → RCA flare ignition sequence brainstorming → Introduction to FEM & MSC.NASTRAN → GRIDS. B.C. CELAS elements. → OUTPUT request → 2 dof system. Coupling between dofs → Root Cause Analysis (RCA)	x		Reading corresponding notes chapters Study and personal work about the lecture. Perform Homework RCA	1,6	3

		Normal Modes				
6	6	 → RCA brainstorming → Normal modes in an aircraft. Differential diagnosis. → The very "basic" normal modes Wing bending mode ⇒ 2D plunge mode Wing torsion mode ⇒ 2D pitch mode Aileron rotation ⇒ sensitivity to actuator stiffness → Mode shape identification. Brainstorming. Identification of bending modes (lifting surfaces; fuselages) Identification of torsion modes (lifting surfaces; fuselages) Identification of control surface rotation modes → Normal modes. What for? Brainstorming. → Introducing Generic Transport Aircraft model (NASTRAN format) → Model geometry: grid points → Model properties: PBAR elements. → Mass model properties: CONM2 → GTA normal modes 	x	Reading corresponding notes chapters Study and personal work about the lecture. Perform Homework: derive half (S) and half(A) model starting from a complete aircraft model.	1,6	3
7	7	Partial Exam 1	Х	Study Partial Exam 1	1,6	7
8	8	 3D unsteady aerodynamics: DLM → RCA brainstorming → Revisiting 2D unsteady aerodynamics (Wagner, Küssner, Theodosen) → Revisiting 3D unsteady aerodynamics (B. Rodden and the Doublet Lattice Method DLM) → Model geometry: CAERO → Model properties: PAERO → Interpolation: SPLINES → GTA unsteady aerodynamic model 	x	Reading corresponding notes chapters Study and personal work about the lecture. Prepare Partial1 exam.	1,6	3
9	9	Static Aeroelasticity. Trim Solution. Control Surface Effectiveness. → Relevance of the static aeroelastic problem. → Airworthiness regulations on static aeroelasticity → The very "basic" normal modes ■ Wing bending mode ⇒ 2D plunge mode ■ Wing torsion mode ⇒ 2D pitch mode	x	Reading corresponding notes chapters Study and personal work about the lecture.	1,6	3

		 Aileron rotation ⇒ sensitivity to actuator stiffness 		Perform Homework:
		\rightarrow Relevance of Divergence		determination of elevator
		\rightarrow Briefing on 2D divergence analytical solution		effectiveness.
		→ Relevance of Control surface effectiveness		
		→ Briefing on 2D control surface effectiveness		
		ightarrow Brainstorming on what is needed to solve the static aeroelastic problem		
		using the FE technique.		
		\rightarrow GTA Trim solution (NASTRAN SOL 144)		
		→ Spanwise evolution of vertical deformation and twist		
		\rightarrow GTA Divergence solution		
		\rightarrow GTA Aileron effectiveness		
		→ Homework: determine elevator effectiveness		
		Flutter		
		\rightarrow Relevance of flutter.		Reading corresponding
		→ Airworthiness regulations on flutter		notes chapters
	10	→ Briefing on flutter solver mathematics		Study and personal work
10		ightarrow Brainstorming on what is needed to solve the flutter problem using the FE	х	about the lecture. 1,6 3
		technique.		Perform homework:
		\rightarrow GTA Flutter solution (NASTRAN SOL 145)		determination of aileron
		\rightarrow GTA V-g plot		massbalance to prevent
		ightarrow Homework: determine aileron massbalance to prevent flutter		flutter.
		Dynamic Landing		
		ightarrow Relevance of dynamic landing		Reading corresponding
		→ Airworthiness regulations on dynamic landing		notes chapters
		→ Briefing on dynamic landing solver mathematics		Study and personal work
11	11	ightarrow Brainstorming on what is needed to solve the dynamic landing problem using	Х	about the lecture. 1,6 3
		the FE technique.		Perform homework:
		\rightarrow GTA dynamic landing solution (NASTRAN SOL 145)		determine and plot wing
		ightarrow 1D envelopes of bending, shear and torque due to dynamic landing		root 2D envelopes.
		→ Homework: determine and plot wing root 2D envelopes		
		Discrete Tuned Gust (DTG)		Reading corresponding
		\rightarrow Relevance of DTG analysis		notes chapters
13	12	→ Airworthiness regulations on DTG	х	Study and personal work 1,6 3
		→ Briefing on DTG solver mathematics		about the lecture.
		\rightarrow Brainstorming on what is needed to solve the DTG problem using the FE		Perform homework:
		technique.		determine wing root 2D

		 → GTA DTG solution (NASTRAN SOL 146) → 1D envelopes of bending, shear and torque due to DTG → Homework: determine wing root 2D envelopes of DTG ar Dynamic landing 	nd compare with		envelopes of DTG and compare with Dynamic landing		
14	13	 Continuous Turbulence (CT) → Relevance of CT analysis → Airworthiness regulations on CT → Briefing on CT solver mathematics → Brainstorming on what is needed to solve the CT problem technique. → GTA CT solution (NASTRAN SOL 146) → 1D envelopes of bending, shear and torque due to DTG → Homework: determine wing root 2D envelopes of CT (equellipses) and compare with DTG & Dynamic Landing 	x		Reading corresponding notes chapters Study and personal work about the lecture Perform homework: determine wing root 2D envelopes of CT (equal probability ellipses) and compare with DTG & Dynamic Landing	1,6	3
15	14	Partial Exam 2	X		Study Partial Exam 2.	1,6	7
17		Final Exam				1,6	
					Subtotal 1	24	49
		Τα	otal 1 (Hours of class plus stu	ident homework hou	ırs between weeks 1-14)	73	3

15		Tutorials, handing in, etc							0,5	0,5
16										
17		Assessment							0,5	0,5
18										
								Subtotal 2	1	1
	Total 2 (Hours of class plus student homework hours between weeks 15-18)						rs between weeks 15-18)	2	2	

		TOTAL (Total 1 + Total 2. <u>Maximum 90 hours</u>)	75
--	--	---	----