DENOMINACIÓN ASIGNATURA: ELECTRONIC INSTRUMENTATION IN ENERGETIC SYSTEMS										
GRADO	:	Grado en Ingeniería de la Energía (INGLÉS BACHELOR IN ENERGY ENGINEERING	n Ingeniería de la Energía (INGLÉS) OR IN ENERGY ENGINEERING					CUATRIMESTRE: 2º		
	OGRAMMING									
WEEK	SESSION	CONTENT DESCRIPTION	GROUPS (Marcar X)		SPECIAL BOOM FOR	WEEKLY SCHEDULE FOR STUDENTS				
			LECTURE	SEMINAR	SESSION (computer class room, audio-visual class room,)	DESCRIPTION		CLASS HOURS	HOMEWORK Max 7h per week	
1	1	 INTRODUCTION (goals, skills, methodology, EIES schedule) SENSORS AND TRANSDUCERS 2.1 What a transducer is? 2.2 Pros & cons of transducers (electrical) 2.3 Active and passive sensors 2.4 Sensors classification approach EXAMPLES 	X			Course syllabus and gu Basic concepts about o SPOC course	uidelines electronic sensors	1.66	2	
2	2	 3. TRANSDUCER PERFORMANCE –SPECIFICATIONS 3.1 Introduction: static and dynamic regime 3.2. Accuracy, precision 3.3. Calibration curve 3.4. Full-scale and measurement range 3.5. Sensitivity 3.6. Linearity 3.7. Resolution and threshold 3.8. Repeatability, hysteresis and stability 3.9 Bandwidth EXAMPLE: sensor characteristics / static performance 				Understand concepts of sensitivity in differe Understand concepts of linearity & hysteres Evaluation and a performance and spec SPOC course	and order of magnitude ent sensors. and order of magnitude is in different sensors analysis of sensor's cifications	1.66	2	
3	3	 4. SIGNAL CONDITIONING I 4.1 Signal conditioning circuits 4.2 Potentiometric circuit 4.3 Wheatstone bridge (WB) EXAMPLE EXERCISES: signal conditioning - potentiometric circuit and WB 	x			Understand different J When they should be design. Potentiometric circuit Ro analysis for max drawback. Understand Wheat properties, usefulness balanced, Correct Wheastone amplifying. SPOC course	potentiometric circuits. used and proper circuit exercises. sensitivity. Small-signal stone bridge circuit s: small-signal, linearity, bridge choice when	1.66	4	

4	4	 4. SIGNAL CONDITIONING II 4.4 Amplification 4.4.1. Amplifier characteristics. 4.4.2. Load effects 4.4.3. Ideal O.A. O.A. when open loop and feedback (inverting, non-inverting, adder, buffer, etc.) 4.4.4. Differential amplification 4.4.5 Instrumentation amplifier 	x			Identify the need for amplification Operational amplifier-based circuits and schemes I-V converter Brief introduction to instrumentation amplifier Exercises including Wheatstone bridge + strain + instrumentation amplifier	1.66	4
5	5	5. TRANSDUCERS FOR TEMPERATURE MEASUREMENTS 5.1 Applications. Definition, scales, 5.2. Temperature measurements through mechanical effects 5.3. Thermometry by ICs. 5.4. Resistive temperature sensors 5.5. Thermistors / Thermocouples 5.6. Comparative Temperature Sensors: EXERCISES first approach SIGNAL CONDITIONING EXERCISES: Wheatstone Bridge and Amplification- PRACTICE 1 REPORT				Identify most used commercial and off-the- shelf temperature sensors and signal conditioning, being able to select among them depending on the application SPOC course	1,66	3
6	6	PRACTICE 1: TEMPERATURE SENSOR CALIBRATION (I)			LAB		1.66	7
7	7	PRACTICE 1: TEMPERATURE SENSOR CALIBRATION (II)			LAB		1.66	
8	8	 6. STRAIN SENSORS 6.1. Applications of interest. Basic concepts: extensiometry. 6.2. Principle of operation. 6.3. Strain gauges: types. 6.4. Static performance and orientation. 6.5. Signal conditioning. Strain sensor EXERCISE: first approach SIGNAL CONDITIONING EXERCISES: Wheatstone Bridge and Amplification- PRACTICE 2 REPORT 		X		Basic strain measurement principles. Basis on extensiometry: deformation, units, concepts, Signal conditioning circuits	1.66	
9	9	PRACTICE 2: STRAIN GAGES			LAB		1.66	4

10	10	 7. DISPLACEMENT AND LEVEL SENSORS 7.1. Applications. Definition, scales, 7.2. Resistive potentiometers. 7.3. Hall effect sensors. 7.4. Inductive and capacitive sensors. 7.4.2. Measuring circuits. 4. SIGNAL CONDITIONING II 4.5 MODULATION / Demodulation in instrumentation systems 4.5.1 Introduction. Pros and cons. 4.5. AM modulation: characteristics and ways to implement 		X		Identify most used comercial and off-the-shelf position, level and displacement Sensors, being to select ampng them depending on the application. Proper selection of modulation type, frequency, filtering, etc. Modulation, demodulation: resume	1.66	3
		4.6 FILTERING SIGNAL CONDITIONING EXERCISES: - PRACTICE 3 REPORT						
11	11	PRACTICE 3: INDUCTIVE SENSOR AND FILTERING			LAB		1.66	7
12	12	 8. OPTICAL SENSORS 8.1 Light properties. Photometry: units. Optical sources and specifications 8.2. Photoconductive cell. 8.3. PN junctions: photodiodes 8.4. Photovoltaic cell. EXERCISES: optical sensor systems PRACTICE 4 REPORT 	x			Signal conditioning: proper selection of sampling frequency, number of bits. System block diagram: basis of A/D and D/A converters Knowing light properties for measuring. Optical sensor types. Signal conditioning for optical sensors.	1.66	5
13	13	PRACTICE 4: MOTOR MOTION CONTROL and conditioning (I)			LAB		1.66	2
14	14	PRACTICE 4: MOTOR MOTION CONTROL and conditioning (II)			LAB	INDIVIDUAL REPORT DELIVERY	1.66	2
SUBTOTAL							23 + 46 = 69	
15		Tutorials, mentoring hours, handling, etc.	x		5	Tutoría colectiva para resolver dudas de toda la asignatura?	3	
16-18		Assessment	x				3	7
TOTAL								