

COURSE: SOLAR ENERGY		
DEGREE: Energy Engineering	YEAR: 2nd	TERM: 2nd

The course has 29 sessions distributed in 14 weeks. The laboratory sessions are included in these sessions. The students have 2 sessions per week, excepting in one week in which they have 3 sessions.

	WEEKLY SCHEDULE								
WEEK	SESSION	CONTENTS DESCRIPTION	GROUPS (mark X)		SPECIAL ROOM FOR SESSION (Computer	YES/NO If the	WEEKLY SCHEDULE FOR STUDENT		
~	ON		LECTURES	SEMINARS	class room, audio-visual class room)	needs 2 teachers	DESCRIPTION	IN CLASS HOURS	HOME- WORK HOURS (Max. 7h week)
1	1	Ch.1 Solar radiation. The sun. The solar constant. Definitions: declination, hour, azimuth angle, altitude angle, longitude correction. Solar resource. Beam and Diffuse components.	x			NO	Reading and study Solution of relevant examples.	1.66	4.67
1	2	Ch 1. Solar radiation (cont) Evaluation of the incident angle, shadows,		Х		NO	In-class problem solutionPresentation of homework resultsCorrection of common errors	1.66	

2	3	Ch 2. Heat Transfer Fundamentals Natural Convection between Flat Parallel Plates and between Concentric Cylinders. Heat transfer relations for internal flow. E-NTU for Heat exchangers.	x		NO	Reading and study Solution of relevant examples.	1.66	
2	4	Ch 2. Heat Transfer Fundamentals (cont) Heat exchagers.		х		In-class problem solutionPresentation of homework resultsCorrection of common errors	1.66	
3	5	Ch 3 Radiation Fundamentals. Fundamentals of radiation. The electromagnetic spectrum. The Blackbody. Plank's law and Wien's. Stefan-Boltzman equations. Radiation exchange between gray surfaces. Thermal resistance of radiation. Surface radiation measurements. Selective surfaces.	X			Reading and study Solution of relevant examples.	1.66	5
3	6	Ch 3 Radiation Fundamentals (cont) Emissive power, irradiation and radiosity.		x	NO	In-class problem solutionPresentation of homework resultsCorrection of common errors	1.66	
4	7	Ch 3. Radiation Fundamentals (cont) Opaque materials: View Factors. Kirchoff's Law. Insulators. Shields. Rerradianting surfaces.	x		NO	Solution of relevant examples of radiation between surfaces using Kirchoff's Law.	1.66	
4	8	Ch 3. Radiation Fundamentals (cont) Radiation exchange between surfaces.		x	NO	In-class problem solutionPresentation of homework resultsCorrecting of common mistakes	1.66	5
5	9	Ch 3. Radiation Fundamentals (cont) Transmision through glazing. Transmitance- absortance product. Snell's law.	x			Reading and study Solution of relevant examples.		
5	10	Ch 3. Radiation Fundamentals (cont) Absorbed radiation on a collector.		х		In-class problem solutionPresentation of homework resultsCorrection of common errors		

6	11	Ch 4. Flat-plate collectors Description. Energy Balance. Temperature distribution. Overall Heat transfer coefficient. Collector performance.	X			NO	Reading and study: Flat plate collectors	1.66	_
6	12	Ch 4. Flat-plate collectors Heat removal factor, F_R and flow factors. Mean fluid and plate temperature. Effective transmitance.		x		NO	In-class cases analysis and problem solutionPresentation of homework resultsCorrection of common errors	1.66	5
7	13	Ch 4. Concentrating collectors	Х			NO	Reading and study: Thermodynamic analysis of concentrating collectors.	1.66	
7	14	Laboratory session-1. Calculation of solar angles, local/solar time using Matlab		х	Computer room	NO	 Reading of the guideline and instructions documents Participation into the practical session and data acquisition Results analysis and critical evaluation. Preparation of the report 	1.66	7
8	15	Ch 5. Solar heating. Facilities Solar heating. Facilities: Design of solar heating systems and service water systems.	x			NO	In-class problem solutionCorrection of common errorsReading and study:	1.66	
8	16	Laboratory session-2. Radiation on inclined surfaces using Matlab		x	Computer room	NO	 Reading of the guideline and instructions documents Participation into the practical session and data acquisition Results analysis and critical evaluation. Preparation of the report 	1.66	7
9	17	QUIZ-1 on Solar Energy.	х			NO	- In-class evaluation activity	1.66	
9	18	Laboratory session-3. Building heating: Modelization of solar facility using Matlab		х	Computer room	NO	 Reading of the guideline and instructions documents Participation into the practical session and data acquisition 		7

						- Results analysis and critical evaluation.		
						- Preparation of the report		
10	19	Ch 5. Solar heating. Facilities (cont.) Design methods. F-chart Method: Liquids and Air systems. Utilizability	x		NO	Reading and study. Understanding of the concept of thermal stratification. Deduction of the equation of temperature distribution.	1.66	
						- In-class problem solution		
10	20	Ch 5. Solar heating. Facilities (cont.) F-Chart results			NO	- Presentation of homework results- Correction of common errors	1.66	
				х				
11	21	Ch. 6 Energy storage Solar collector outputs and process loads. Energy storage. Water storage. Stratification in storage tanks. Packed bed storage. Storage walls. Phase-change storage.	х		NO	Reading and study. Understanding of the concept of thermal stratification. Deduction of the equation of temperature distribution.	1.66	5
11	22	Ch. 6 Energy storage (cont). Solution of example cases.		x	NO	- Presentation of homework results - Correction of common mistakes	1.66	5
12	23	Ch 7. Industrial processes Desalinization and solar drying	X		NO	Reading and understanding of the thermal behaviour of heat exchangers and their different configurations in industrial processes.	1.66	
12	24	Ch 7. Industrial processes (cont) Desalinization and solar drying		Х	NO	In-class problem solution - Presentation of homework results - Correction of common errors	1.66	5
13	25	Ch 8. Photovoltaic systems. Photovoltaic converters. Semiconductors: pn junction. Photovoltaic effect. Types of PV technology	х		NO	- Reading and study: description and deduction of the principal parameters describing the pv technique.	1.66	7

						- Reading of the guideline and instructions documents		
13	26	Ch 8. Photovoltaic systems.		х	NO	In-class problem solution - Presentation of homework results - Correction of common errors	1.66	
14	27	QUIZ-2 Solar Energy	Х		NO	- In-class evaluation activity	1.66	7
14	28	Ch 8. Photovoltaic systems (cont.). Related equipment: batteries, inverters, c controllers, peak-trackers.	harge	X	NO	Reading and study: Simplifying assumptions and methodologies aimed to solve pv engineering problems In-class problem solution - Presentation of homework results	1.66	5
13	29	Laboratory session-4					1.66	5
			•			Subtotal 1	48.3	85.7
			Total 1 (Hours of class	plus studen	t homework hours bety	ween weeks 1-14)	133	
15		Tutorials, handing in, etc					7	
16								
17		Assessment					3	
18								7
						Subtotal 2	3	14
			Total 2 (Hours of class	plus studen	t homework hours betv	ween weeks 15-18)	17	

OTAL (Total 1 + Total 2. <u>Maximum 180 hours</u>) 150	TOTAL (Total 1 + Total 2. <u>Maximum 180 hours</u>)	150
---	--	-----