

COURSE: FLUID INSTALLATIONS AND HYDRAULIC MACHINERY		
DEGREE: ENGINEERING IN INDUSTRIAL TECHONOLOGIES	YEAR: 4	TERM: 1

La asignatura tiene 29 sesiones que se distribuyen a lo largo de 14 semanas. Los laboratorios pueden situarse en cualquiera de ellas. Semanalmente el alumno tendrá dos sesiones, excepto en un caso que serán tres

				WEEKLY	PLANNING					
WEEK	NOISSAS	DESCRIPTION		OUPS irk X)	SPECIAL ROOM FOR SESSION (Computer	Indicate YES/NO If the session	WEEKLY PROGRAMMING FOR ST	FUDENT		
~	NC		LECTURES	SEMINARS	class room, audio-visual class room)	needs 2 teachers	DESCRIPTION	CLASS HOURS	HOMEWORK HOURS (Max. 7h week)	
1	1	Presentation and basic facts about the subject. Introduction and review of the fundamental concepts: primary pressure losses, correlations for the friction factor in ducts, Moody chart, secondary pressure losses	x			NO		1,6		
1	2	Pipe networks (1/2). Ducts in series and in parallel. Branched networks. Solution of the three-reservoir problem (1: trial and error)		x		NO		1,6	3	
2	3	Solution of the three-reservoir problem (2: linearization and matrix method)	x			NO		1,6		
2	4	Solution to problems on branched networks		х		NO		1,6	6	
3	5	Pipe networks (2/2). The matrix method for solving	х			NO		1,6	6	

		complex pipe networks						
3	6	Lab 1 : Introduction to MATLAB programming. Numerical solution of the three-reservoir problem with the matrix method.		x	Computer class room	YES	1,6	
4	7	Theory of incompressible transient flow in ducts. Example.	х			NO	1,6	
4	8	Lab 2 : Programming of the network proposed for evaluation		x	Computer class room	YES	1,6	6
5	9	Application of the incompressible transient theory: surge tanks	х			NO	1,6	
5	10	Lab 3 : Programming of the network proposed for evaluation		x	Computer class room	YES	1,6	4
6	11	Theory of the water hammer (1/2). Basic equations.	х			NO	1,6	
6	12	Solution to problems of incompressible transient flow		х		NO	1,6	4
6	13	Lab 4 : Programming of the network proposed for evaluation		х	Computer class room	YES		
7	14	Theory of the water hammer (2/2). Sudden closure of a valve at the end of a pipe. Sudden opening of a valve at the end of a pipe: the phenomenon of cavitation	x			NO	1,6	
7	15	Solution of transient flow problems		х		NO	1,6	6
8	16	Solution of transient flow problems	х			NO	1,6	
8	17	Solution of transient flow problems		х		NO	1,6	6
9	18	FIRST PARTIAL EXAM	х			NO	1,6	
9	19	Solution of the first partial exam		х		NO	1,6	6
10	20	Introduction to turbomachinery (1/2). Classification of fluid machinery. Hydraulic pumps and turbines. Types and basic characteristics. Hydraulic turbomachines.	x			NO	1,6	
10	21	Introduction to turbomachinery (2/2). Cavitation and NPSH. Similarity in pumps and turbines (1/2)		x		NO	1,6	3
11	22	Similarity in pumps and turbines (2/2). Specific speed and specific diameter. Cordier's chart.	х			NO	1,6	
11	23	Coupling of turbomachines to pipe networks. Optimal selection. Example.		х		NO	1,6	5
12	24	Solution to problems on turbomachines.	х			NO	1,6	
12	25	Solution to problems on turbomachines.		х		NO	1,6	5

13	26	Solution to problems on turbomachines.	x		1	NO			1,6	
13	27	Solution to problems on turbomachines.		x	1	NO			1,6	6
14	28	Solution to problems on turbomachines.	x		1	NO			1,6	6
14	29	SECOND PARTIAL EXAM	х		1	NO			1,6	6
									1,6	
								Subtotal 1	48,33	78
		Total 1 /Hov	irs of class	nlus studei	nt homework hou	urs hetu	ueen weeks 1-14)		126,	33
		Total I (not	irs of class	pras staaci	TE HOTTIC WOLK HOU	urs betw	reen weeks 1 14)		120,	.55
15		Tutorials, handing in, etc	irs of class	pras stader	THE HOMEWORK HOU	urs betw	14)		120,	.55
15 16			ns of class	prus studer	TO THE WORK HOU	urs beev	Lett weeks 1 14)		120,	
			iis of class	prasseuder	THOME WORK HOU	ars beev	ACCIT WEEKS 1 14)		120,	33
16		Tutorials, handing in, etc	iis of class	pras studen	THOME WORK HOU	ura setw	ACCIT WEEKS 1 14)		120,	33
16 17		Tutorials, handing in, etc	is of class	pras studen	THOME WORK HOU	ura setw	ech weeks 1 14)	Subtotal 2	120,	
16 17		Tutorials, handing in, etc	is of class	pras studen	THE HOME WORK HOU	ura setw	ACCIT WEEKS 1 14)			

TOTAL (<i>Total 1 + Total 2.</i> <u>Maximum 180 hours</u>)
