

COURSE: Fluid Mechanics

DEGREE: Bachelor in Industrial Technology Engineering YEAR: 3/4 TERM: 2

WEEK	SESSI ON	DESCRIPTION	GROUPS		SPECIAL ROOM FOR SESSION (Comput er class room, audio- visual class room)	Inidicate YES/NO If the session needs 2 teachers: Maximum 4 sessions	WEEKLY PROGRAMMING FOR STUDENT		
			URE	SEMI NAR			DESCRIPTION	CLASS HOURS	HOMEWORK HOURS Maximum 7 H
1	1	FLOW KINEMATICS. Material derivative. Acceleration. Circulation and vorticity. Irrotational flow and velocity potential. Example.		Х		NO		1,5	4
1	2	Relative motion near a point. Rate-of-strain tensor. Deformation of square and cubic elements. Example.	Х			NO		1,5	
2	3	CONSERVATION EQUATIONS IN DIFFERENTIAL FORM. Summary of conservation equations in integral form. Mass conservation equation in differential form. Stream function.		Х		NO		1,5	4
2	4	Stress tensor. Navier-Poisson law. Momentum equation in differential form.	Х			NO		1,5	
3	5	Perfect liquids: modified pressure and Bernoulli's equation. Example.		Х		NO		1,5	5
3	6	Conduction heat transfer. Fourier's law. Prandtl number. Energy equation in differential form. Kinetic and Internal energy equations. Enthalpy and entropy equations.	X			NO		1,5	
4	7	Navier-Stokes equations: conservation laws,		Χ		NO		1,5	4

		equations of state, consitutive equations, initial					
		and boundary conditions.					
4	8	Solution of problems in planar, cylindrical and spherical coordinates. TAKE-HOME QUIZZ #1 .	Х		NO	1,5	
5	9	UNIDIRECTIONAL FLOW. Basic equations, initial and boundary conditions. Two-dimensional steady case: Couette and Hagen-Poiseuille flows.		X	NO	1,5	5
5	10	Quasi-steady Couette flow. Unsteady two- dimensional flows. Impulsive flow: Rayleigh problem.	Х		SI	1,5	
6	11	Pulsating flow: Stokes and Wommersley problems.		Х	NO	1,5	5
6	12	Solution of unidirectional flow problems.	Х		NO	1,5	
7	13	CLASS QUIZZ #1.		X	NO	1,5	5
7	14	QUASI-UNIDIRECTIONAL VISCOUS- DOMINATED FLOW. Basic equations, initial and boundary conditions. Poiseuille flow. Quasi- steady flow in slowly varying ducts.	Х		NO	1,5	
8	15	Finite-length effects: entrance region. General solution of quasi-steady flow in ducts.		Х	NO	1,5	5
8	16	Solution of quasi-unidirectional flow problems.	Х		NO	1,5	
9	17	Solution of quasi-unidirectional flow problems. TAKE-HOME QUIZZ #2.		Х	NO	1,5	6
9	18	HYDRODYNAMIC LUBRICATION. Introduction. Bidimensional case: order-of-magnitude analysis. The lubrication effect.	Х		NO	1,5	
10	19	Reynolds lubrication equation.		X	NO	1,5	4
10	20	Solution of hydrodynamic lubrication problems.	Х		NO	1,5	
11	21	Solution of hydrodynamic lubrication problems.		X	NO	1,5	4
11	22	CLASS QUIZZ #2.	Х		NO	1,5	
12	23	IDEAL FLOW THEORY . Flow at large Reynolds numbers. Euler equations. Initial and boundary conditions. Potential flow.		X	NO	1,5	6
12	24	Frictionless flow in ducts. Solution to ideal flow problems.	Х		NO	1,5	
13	25	BOUNDARY-LAYER THEORY. Introduction. Main features of the boundary layer. Equations and boundary conditions.		X	NO	1,5	5
13	26	Skin friction. Boundary-layer thickness. Boundary-layer separation. Blasius' solution.	Х		NO	1,5	
14	27	Von Kármán integral boundary-layer equation. Von Kaŕmán-Pohlhausen technique. Examples.		Х	NO	1,5	6
14	28	Thwaites method. Thermal boundary layer. Examples. TAKE-HOME QUIZZ #3 .	Х		NO	1,5	
SUBTOT	AL	•			<u> </u>	42	+ 68 = 110
15		Tutorials, Handing in, etc			NO	2	2
16-18		Assessment			NO	3	18
TOTAL							135

LABORATORIES CLASSES PROGRAMMING*									
SES SIO N	WEEK	DESCRIPTION	LABORATORY	WEEKLY PROGRAMMING FOR STUDENT					
				DESCRIPTION	CLASS HOURS	HOMEWO RK HOURS Maximum 7 H			
1	7	Use of Matlab to analyse the pulsating flow in a pipe (I)	Computer room	- Careful reading of session description prior to entering the lab Numerical session in the lab Analysis of data	1,5	3,5			
2	8	Use of Matlab to analyse the pulsating flow in a pipe (II)	Computer room	- Numerical session in the lab. - Analysis of data - Report writing	1,5	3,5			
3	12	Use of Matlab to solve and analyse Blasius' boundary layer (I).	Computer room	- Careful reading of session description prior to entering the lab Numerical session in the lab Analysis of data	1,5	3,5			
4	13	Use of Matlab to solve and analyse Blasius' boundary layer (II).	Computer room	- Numerical session in the lab. - Analysis of data - Report writing	1,5	3,5			
TOTAL	15								

^{* 6} hours of complementary laboratories classes in EPS