

COUR	RSE: (Control Engineering I											
DEGF	REE:						YEAR: 3	TERM:					
	-	tura tiene 29 sesiones que se distribuyen a lo largo d nente el alumnos tendrá dos sesiones, excepto en un				ios pueden	n situarse en cualquiera de ellas.						
WEEKLY PLANNING													
WEEK	SESSION	DESCRIPTION	GROUPS (mark X)		SPECIAL ROOM FOR SESSION (Computer	FOR Indicate YES/NO ON If the	WEEKLY PROGRAMMING FO	R STUDENT					
~	NC		LECTURES	SEMINARS	class room, audio-visual class room)	session needs 2 teachers	DESCRIPTION	CLASS HOURS	HOMEV HOU (Max. wee				
1	1	Presentation of the subject Introduction to the signals and systems 1. Concept of Signal 2. Type of Signals 3. Introduction to the Systems 4. Type of Systems Laplace Transforms: 1. Concept of of Laplace Transforms 2. Properties of the Laplace Transforms 3. Utility of the Laplace Transforms 4. Table of Laplace Transforms	x					1,66	4				

		Solution of proposed exercises. Exercises of Laplace					
1	2	Transform. One or two transforms will be solved using			Personal work about lesson.	1,66	
Т	2	the definition, obtaining the rest using the application of			Proposed exercises.	1,00	
		the properties.		Х	Discussion		
		Mathematical Modelling of physical systems					
		1 Concept of Model of a System					
		2 Modelling of Mechanical Systems					
		3 Modelling of Electrical Systems					
		4 Modelling of Electromechanical Systems					
		5 Modelling of Hydraulic Systems					
2	3	6 Modelling of Chemical Systems				1,66	
2	3	7 Modelling of Thermal Systems				1,00	
		Transfer Function.					
		1. Transfer function					
		2. Linear systems of constant coefficients					
		3 Systems Linealization. Concept of point of balance					
		4. Transfer function for systems of continuous time					
		5. Transfer function and impulsional response	Х				
					Personal work about lesson.		
2	4	Solution of proposed exercises. Modeling and Transfer			Proposed exercises.	1,66	
		Function of linear systems.		Х	Discussion		4
		Transfer Function and Linealization.					
3	5	1. Linealization. Concept of equilibrium point				1,66	
5		2. Transfer function of linarized systems of continuous				1,00	
		time	Х				-
		Solution of proposed exercises. Linealization and					
3	6	Transfer Function. The linealization of different systems			Personal work about lesson.	1,66	
3	Ŭ	with non-linearities will be realized calculating the			Proposed exercises.		
		balance points		Х	Discussion		4
		Graphical models of representation of systems and					
		obtaining of the Transfer Function					
4	7	1. Block Diagram				1,66	
		2. Operations with blocks					
		3. Flowchart of a System					
		4. Mason's method	Х				4
		Transfer Functions of complete Physical systems with			Personal work about lesson.	1.00	
4	8	linearization and simplification of block diagrams and			Proposed exercises.	1,66	4
		flowchart.		Х	Discussion		4

59	Introduction to the Analysis of Systems in the time domain 1. Introduction to the time domain analysis 2. Standard signals of input 3. Relation between the time response and the situation of poles and zero in continuous time systems					
	 Introduction to the time domain analysis Standard signals of input Relation between the time response and the situation 					
	2. Standard signals of input Relation between the time response and the situation					
	. Relation between the time response and the situation					1
59	of poles and zero in continuous time systems					
					1,66	
	4. Concept of dominant pole					
	5. Equivalent systems of reduced order					
	6. Additional poles and zeros					
	7. Algebraic methods for the stability analysis: Routh					
	criterion.	Х				
	Solution of proposed exercises. Exercises of reduced					
	system equivalent and analysis of the stability will be					
	realised applying the Criterion of Routh.					
5 10	Responses to different inputs of the systems of first				1,66	
	order and second order. Also exercises about the			Personal work about lesson.		
	extraction of the transfer function from the time			Proposed exercises.		
	response.		Х	Discussion		4
Te	emporary analysis of the systems of continuous time of					
	first order					
	1. Systems of first order					
	2. Impulsional answer of systems of first order					
	3. Answer before signal step of a system of first order					
4	4. Answer before signal incline of a system of first order					
Te	emporary analysis of the systems of continuous time of					
6 11	second order				1,66	
	1. Systems of second order					
	2. Classification of the systems of second order					
3.	Answer before signals step and the systems of second					
	order					
	4. Parameters that characterize the systems of second					
	order					
	5. Impulsional answer and before incline of systems of					
	second order	Х				
	Responses to different inputs of the systems of first					
6 12	order and second order. Also exercises about the			Personal work about lesson.	1,66	
	extraction of the transfer function from the time			Proposed exercises.		
	response.		Х	Discussion		4

7	13	First tast of sublistion	х		<u> </u>		1,66	
7	14	(position sensor) with which you can then reduce the block diagram of the second-order system. It is estimated, theoretically, the system response for a step, determining the parameters of second-order system (overshoot, settling time and peak time) for the three amplifier gains. You should verify with the Simulink simulation results and experimentally test them finally seeing the potential differences between the	X				1,66	
		theoretical model and real.		x	Lab	Realization of memory practice		4
		 Introduction to the continuous system analysis in the frequency domain: 1. Frequency response of a system of continuous time 2. Types of graphical representations 3. Diagram of Bode. Meaning and applications 4. Polar diagram. Meaning and applications 5. Diagram magnitude-phase. Meaning and applications 						
8	15	Bode Diagrams: 1. Concept of asymptotic Diagram of Bode 2. Diagram of Bode of a constant 3. Diagram of Bode of poles and zeros in the origin 4. Diagram of Bode of poles and zeros real negatives 5. Diagram of Bode of poles and zeros real positives 6. Diagram of Bode of negative complex poles 7. Diagram of Bode of imaginary poles 8. Diagram of a system; set of poles and zero					1,66	
8	16	8. Diagram of a system: set of poles and zero Solution of proposed exercises. Representation of the diagrams of Bode. Also Transition functions from the	X			Personal work about lesson. Proposed exercises.	1,66	4
		diagram of Bode will be extracted.		Х		Discussion	1	4

9	17	Introduction to the control systems Static analysis of the feedback systems Concept of error in permanent regime Concepts of gain of position, speed and acceleration 4. Type of a system Relation between type and gains of a system Calculation of the error in the feedback systems Calculation of errors in systems with unitary feedback 				1,66	
		2. Calculation of errors in systems with nonunitary feedback					
		3. Errors dues to disturbances	х				
9	18	Lab Practice 2: Basic Frequential Study of Continuous Systems 1st and 2nd Order. It intends to perform a frequency analysis for systems of first and second order, through analysis of their response to a sinusoidal input of amplitude A and frequency variable. As a first order system uses the dc motor used in past practice. The motor drive signal is a sine wave of fixed amplitude and variable frequency which is obtained through a signal generator. The student must obtain experimentally the Bode plots (amplitude and phase) for the first-order system (engine) when the entry is submitted a 2V sine signal amplitude and frequency variable gain for three different cases. You must also obtain asymptotic Bode diagrams for the previous case.		x	Lab	Image: Non-State 1,66 Realization of memory practice 1	4
10	19	Dynamic analysis of feedback systems 1. Concept of Root Locus 2. Criteria of the module and the argument 3. Rules for the drawn up one of the Root Locus 4. Inverse Root Locus 5. Rules for the layout of the Inverse Root Locus 6. Widespread Root Locus	x			1,66	
10	20	Solution of proposed exercises. In it is session will be realised detailed exercises on the Root Locus. At the end of the same one will set out the students to realise drawing up approximate and fast on different systems.		x		Personal work about lesson. Proposed exercises. Discussion	

		Exercises designed to draw the Root Locus and inverse						
		problems in which the system parameter that affects its						
		dynamic behavior is different from the static gain.						
11	21	Frequency analysis of feedback systems Nyquist criterion: 1. Introduction to frequency analysis of feedback systems 2. Cauchy argument Principle 3. Introduction to the Nyquist criterion 4. Calculation of Nyquist Path 5. Application of the Nyquist					1,66	
		Relative stability: 1. Relative stability 2. Margin and phase margin 3. Relative stability in the Bode diagram 4. Relative stability in the magnitude-phase diagram 5. Relationship between the parameters of relative stability and transient response	x					
11	22	Performing exercises. Drills in which the Nyquist criterion applies to different systems, including systems with poles at the origin and poles on the imaginary axis.		x		Personal work about lesson. Proposed exercises. Discussion	1,66	4
12	23	 Basic Control Actions PD and PI Controllers PD Controllers PID Controllers Problems of implementation of PID Controllers Modifications to the PID control: other settings Basic design principles temporal Performance specifications on the Root Locus Time domain design of regulators based on the Root Locus 	x				1,66	
12	24	In the first part of system errors were calculated in steady and non-unity feedback unit. In the second part will begin exercises designed to adjust regulators on Root Locus		x		Personal work about lesson. Proposed exercises. Discussion	1,66	4
13	25	Frequency design of PID controllers 1. Frequency behavior of a PID controller	x				1,66	4

		2 Basic design principles frequency3. Relationship between time and frequency						
		characteristics						
		4. Frequency Design Rules						
		5. Lead and Lag Compensation						
		Practice 3: Design of PID controllers using root locus and						-
		Lead and Lag Networks.						
		They will experiment with different types of controllers						
		(P, PD, PI, and PID) calculated from initial values given by						
13	26	the teacher. Finally, we should compare the results					1,66	
10	20	obtained with the various regulators implemented and						
		decide which is best suited for this type of system.						
		Another key objective of this practice is that students						
		acquire the concept of what a regulator.		х	Lab	Realization of memory practice		
		Solution of exercises. Drills for setting of Lead and Lag				Personal work about lesson.		
14	27	Compensation.				Proposed exercises.	1,66	
			х			Discussion		
	20	Second evaluation test					1,66	
14	28			х			1,00	
		Practice 4: Design of PID controllers using root locus and						
		networks and forth.						
		It will experiment with different types of regulators (P, PD, PI						
		and PID) were calculated from initial values given by the						
	29	teacher. Finally, compare the results with the various regulators implemented and decide which is best suited for					1,66	4
		this type of system. Another of the key objectives of this						
		practice is that students acquire the concept of what is a						
		regulator.						
		regulator.		х	Lab	Realization of memory practice		

15	Tutorials, handing in, etc					
16						
17	Assessment				3	
18						38,68
				Subtotal 2	3	

- -

108,32

TOTAL (Total 1 + Total 2. <u>Maximum 180 hours</u>)

150

41,68