uc3m Universidad Carlos III de Madrid

Vicerrectorado de Estudios Apoyo a la docencia y gestión del grado

COURSE: Turbomachinery Design DEGREE: Aerospace Engineering TERM: 1st

			WE	EKLY P	LANNING			
	S E S I O N		TEAC (ma	HING rk X)		WEEKLY PROGRAMMING FOR S	TUDENT	
W E K		DESCRIPTION	L E C T U R E S	S E M I N A R S	FOR SESSION (Computer class room, audio-visual class room)	DESCRIPTION	CLASS HOURS (1,66=50+50 min)	HOMEWORK HOURS (Max. Estim. 6,5h)
1	1	 Introduction and dimensional analysis Introduction to the subject. Course scheduling. Definition of a turbomachine. Specific Speed: machine selection. Compressible gas flow relations. Dimensional analysis. Turbomachinery Basic Equations: Euler, definition of rothalpy. Definition of adiabatic / polytropic efficiency. Enthalpy-entropy diagrams. 	Х				1.66	6.5
	2	Exercises on dimensional analysis Exercises on Turbomachinery Basic Equations		х			1.66	

			WE	EKLY P	LANNING			
	s		TEAC (ma	HING rk X)	SPECIAL ROOM	WEEKLY PROGRAMMING FOR S	STUDENT	
W E K	E S I O N	DESCRIPTION	L E T U R E S	S E M I N A R S	FOR SESSION (Computer class room, audio-visual class room)	DESCRIPTION	CLASS HOURS (1,66=50+50 min)	HOMEWORK HOURS (Max. Estim. 6,5h)
2	3	 Axial flow turbines: two-dimensional stage theory 1 Dimensional analysis of a single turbine stage. Thermodynamics of a turbine stage. Total-to-total stage efficiency. Row loss-stage efficiency relation. Velocity triangles, loading and flow parameters, reaction: Repeating stage hypothesis. 	x				1.66	6.5
	4	Axial flow turbines: problems #1 - Degree of reaction - Effect on efficiency. Optimum reaction. - Smith chart. Empirical versus reversible		х			1.66	
3	5	Axial flow turbines: two-dimensional stage theory #2 Estimation of turbine stage performance. Flow characteristics of a multistage turbine. Stresses in turbine rotor blades. Turbine blade cooling. Detailed design & Design criteria	x				1.66	6.5
	6	Axial flow turbines: problems #2		Х			1.66	
4	7	Axial machines #1: introduction to cascade flow, Definition of streamsurface, m'-θ plane, blade-to-blade analysis. Cascade nomenclature. Airfoil theory, analysis of aerodynamic forces on turbomachinery blades, application of boundary layer theory to cascade forces	x				1.66	6.5
	8	LAB #1: Smith chart		Х	computer		1.66	
E	9	Axial flow compressors and fans: 2D stage theory #1 - Dimensional analysis of a single compressor stage. - Thermodynamics of a compressor stage. - Total-to-total stage efficiency. Row loss-stage efficiency. - Velocity triangles, loading and flow parameters, reaction.	x				1.66	6.5

	WEEKLY PLANNING								
	s	s		TEACHING (mark X)		SPECIAL ROOM	WEEKLY PROGRAMMING FOR STUDENT		
W E K	E S I O N	DESCRIPTION	L E C T U R E S	S E M I N A R S	FOR SESSION (Computer class room, audio-visual class room)	DESCRIPTION	CLASS HOURS (1,66=50+50 min)	HOMEWORK HOURS (Max. Estim. 6,5h)	
5	10	 Axial flow compressors and fans: 2D stage theory #2 Loading-Flow coefficient chart. Reaction choice. Lift and Drag in terms of φ and ψ. Diffusion Factor and solidity selection. Estimation of compressor pressure ratio and efficiency. 		x			1.66	0.5	
6	11	Axial flow compressors and fans: 2D stage theory #3 - Simplify off-design performance. - Compressor characteristic maps. - Stall and surge phenomena.	х				1.66	6.5	
7	12	Exercises on Axial Flow Compressors Two-Dimensional Cascades #1 - Cascade kinematics: velocity triangles. Cascade entalphy and entropy change: loss definitions. - Compressor cascade performance. Compressor characteristics: enthalpy rise, pressure recovery, deflection, deviation and loss. - Surface velocity distribution, diffusion factor. - Compressor cascade correlations: optimum solidity, polar curve. Diffusor efficiency	x	X			1.66	6.5	
	14	Two-Dimensional Cascades #2 - Turbine cascade performance. Turbine characteristics: turning angle, Zweifel coefficient. - Surface velocity distribution: Back Surface Diffusion parameter. - Turbine cascade correlations: loss, optimum pitch-chord ratio	х				1.66		
8	15	LAB #2 - Airfoil design and introduction to MISES		Х	computer		1.66	6.5	
	16	Two-Dimensional Cascades: problems		Х			1.66		

	WEEKLY PLANNING							
W E K	s		TEAC (ma	CHING rk X)	SPECIAL ROOM	WEEKLY PROGRAMMING FOR S	STUDENT	
	ES SI ON	DESCRIPTION	L C T U R E S	S E M I N A R S	FOR SESSION (Computer class room, audio-visual class room)	DESCRIPTION	CLASS HOURS (1,66=50+50 min)	HOMEWORK HOURS (Max. Estim. 6,5h)
9	17	Three-dimensional flow in Axial Turbomachines #1 - Theory of radial equilibrium. - The indirect problem: free-vortex flow, forced-vortex flow, general whirl distribution. - The direct problem	x				1.66	6.5
	18	LAB #3 - Cascade analysis with MISES		Х	computer		1.66	
10	19	 Three-dimensional flow in Axial Turbomachines #2 Compressible flow through a blade-row. Constant specific mass flow. Actuator disc approach. Blade-row interactions. Computer methods solving through-flow problem Secondary flows. Loss, angles and helicity. Three-dimensional losses. Types and models. CFD analysis. 	x	x			1.66	6.5
11	21 22	Centrifugal compressors, fans and pumps #1 - Introduction, definitions and parts. - Optimum design of a centrifugal compressor inlet. - Slip factor. Correlations Centrifugal compressors, fans and pumps #2 - Performance of centrifugal compressors. - Diffuser system. Vane and vane-less diffusers.	x x				1.66	6.5
12	23	 Choking in a compressor stage Radial turbines #1 Introduction. Types of inward flow radial turbine. Thermodynamics of the 90 degrees IFR turbine Basic rotor design. Rotor efficiency definition. Mach number relations. Loss coefficients. Centrifugal compressors, fans and pumps: problems 	x	x			1.66	6.5

	WEEKLY PLANNING							
	S		TEAC (ma	CHING rk X)	SPECIAL ROOM	WEEKLY PROGRAMMING FOR	STUDENT	
W E K	E S I O N	DESCRIPTION	L E C T U R E S	S E M I N A R S	FOR SESSION (Computer class room, audio-visual class room)	DESCRIPTION	CLASS HOURS (1,66=50+50 min)	HOMEWORK HOURS (Max. Estim. 6,5h)
13	25	Radial turbines #2 - Optimum efficiency considerations. - Design considerations for rotor exit. - Incidence, clearance and windage losses. - Pressure ratio limits	x				1.66	6.5
	20	Evan problems		X			1.00	
14	28	Labs presentation		X			1.66	6.5
	29	LAB #4 - Experimental calculation of a compressor map		Х	ab+compute	r	1.66	3.25
Subtotal 1							48	94
	Total 1 (Hours of class plus student homework)							42

15	Tutorials, handing in, etc					3.6	-
16							
17	Assessment					4	10
18							
		-		-	Subtotal 2	8	10
	Total 2 (Hours of class plus student homework						.8

TOTAL (<u>Maximun 160 horas</u>)	160