

Department of Materials Science and Engineering and Chemical Engineering

BACHELOR IN AEROSPACE ENGINEERING	CREDITS: 6 ECTS	COURSE: 2017/18
LECTURE COURSE : AEROSPACE MATERIALS II (251 - 15338)	YEAR: 2	SEMESTER: 2 nd

Session	DATE	PART	Торіс	Large Group/ Small	Professor.	TITLE	DESCRIPTION
				Group			
1	25-26Jan	PRESENTATION OF	1	SG	ST/SM	Introduction to Aerospace Materials II	Introduction to the course. Course structure and Evaluation.
		LECTURE COURSE					Classification of engineering metallic materials
2	29 Jan	1. METALLIC MATERIALS	2	LG	SM	Solidification of Metals	- Solidification of Metals. Generation of the Microstructure
3	1-2Feb	1. METALLIC MATERIALS	2	SG	ST/SM	Metal Casting Processes	Metal Casting Processes. Cast Structures
							Defects in Castings.
4	4 Feb	1. METALLIC MATERIALS	3	LG	SM	Metal Forming Fundamentals	Work hardening. Recovery, Recrystallization and Grain
							Growth
5	8-9 Feb	1. METALLIC MATERIALS	3	SG	ST/SM	Metal Forming Processes	Metal forming processes. Effect of metal forming processes on
							properties and microstructure
6	12 Feb	1. METALLIC MATERIALS	4	LG	SM	Heat Treatments I	- TTT diagrams: ITT and CCT. Heat Treatments: Quenching,
							Tempering, Annealing, Normalizing. Hardenability
7	15-16 Feb	1. METALLIC MATERIALS	4	SG	ST/SM	Heat Treatments II	- TTT diagrams: ITT and CCT. Heat Treatments. Problems.
8	19 Feb	2. BEHAVIOUR IN	5	LG	SM	Mechanisms of deformation and fracture	-Introduction to Fracture. Types of Fracture. Fracture modes.
		SERVICE CONDITIONS.				I : Fracture	Fracture mechanics. Stress concentration. Griffith's theory.
							Stress intensity factor. Problems
9	22-23 Feb	1. METALLIC MATERIALS.	4	SG	ST/SM	Heat Treatments II	Problems
10	26 Feb	2. BEHAVIOUR IN	5	LG	SM	Mechanisms of deformation and fracture	-Fracture. Fracture toughness and Impact test
		SERVICE CONDITIONS.				I : Fracture	Brittle Ductile transition. Problems. DEADLINE FOR SIGNING
							UP VOLUNTARY PRESENTATIONS: 28/02/2018.
11	1-2	2. BEHAVIOUR IN	6	SG	ST/SM	Mechanisms of deformation and fracture	- Introduction to Fatigue. High cycle fatigue. Low cycle fatigue
	March	SERVICE CONDITIONS.				II: Fatigue	Effect of variable cycles. Fatigue crack growth
							TEST 1.
12	5 March	2. BEHAVIOUR IN	6	LG	SM	Mechanisms of deformation and fracture	-Fatigue. Structural features of fatigue
		SERVICE CONDITIONS.				II: Fatigue	Designing against fatigue failure. Problems.
13	8-9	2. BEHAVIOUR IN	7	SG	ST/SM	Thermomechanical behaviour : Creep	-Creep. Creep curve. Effect of stress and temperature on
	March	SERVICE CONDITIONS.					creep. Creep stages. Problems.

14	12 March	2. BEHAVIOUR IN SERVICE CONDITIONS.	7	LG	SM	Thermomechanical behaviour : Creep	Creep design and life prediction. Developing creep-resistant materials. Problems .
15	15-16 March	2. BEHAVIOUR IN SERVICE CONDITIONS.	8	SG	ST/SM	Joining Processes (Voluntary presentations by students)	Introduction to joining processes. Welding. Welding processes for aerospace applications.
16	19 March	2. BEHAVIOUR IN SERVICE CONDITIONS.	9	LG	SM	Corrosion and Wear: Corrosion	Corrosion. Basic electrochemical corrosion. Types of corrosion. Corrosion control and prevention. High temperature corrosion
17	22-23 March	2. BEHAVIOUR IN SERVICE CONDITIONS.	9	SG	ST/SM	Corrosion and Wear: Wear (<i>Voluntary</i> <i>presentations by students</i>)	Friction. Wear. Friction and wear tests. Lubricants. Wear and friction in metal-working processes. Materials selection for tribological system.
18	5-6 April March-	3. APPLICATIONS	10	SG	ST/SM	Ti alloys (Voluntary presentations by students)	Introduction to Ti. Fundamentals of Ti and Ti alloys. Classification of Ti alloys. Production processes and manufacturing TEST 2 .
19	9 April	3. APPLICATIONS	10	LG	SM	Ti alloys	Phase transformations in Ti alloys. Characteristics of Ti alloys. Heat Treatments for Ti alloys. Applications of Ti in aerospace
20	12-13 April	3. APPLICATIONS	11	SG	ST/SM	Surface Treatments (Voluntary presentations by students)	Main surface treatments: Galvanizing; Electrodepostion; Organic Coatings; CVD; PVD: Thermal Spraying. Thermochemical Treatments. Thermal Barrier Coatings
21	15 April	3. APPLICATIONS	12	LG	SM	Al- alloys	History of Aluminum Applications Aluminium Obtaining. Designation of Aluminium Alloys Hardening mechanisms.
22	19-20 April	3. APPLICATIONS	12	SG	ST/SM	Al- alloys (Voluntary presentations by students)	Non Heat treatable Wrought Aluminium Alloys Heat treatable Wrought Aluminium Alloys. Cast Aluminium alloys. Applications in aerospace. Aluminium Processing and Joining
23	23 April	3. APPLICATIONS	13	LG	SM	Special Steels	Special ultra high strength steels , PH stainless steels. Maraging Steels.
24	26-27 April	3. APPLICATIONS	14	SG	ST/SM	Non-destructive Testing (Voluntary presentations by students)	Common NDT method. Visual Inspection. Liquid Penetrants Magnetic Particle. Eddy Current. Radiographic. Ultrasonic Acoustic Emissions. Non-destructive testing. Method comparison.
25	3-4 Mayo	3. APPLICATIONS	15	SG	ST/SM	Alloys for high Temperature applications: Superalloys amd Intermetallics	Superalloys: Microstructure, strengthening Mechanisms. Properties Applications. Intermetallics: Nickel Aluminides. Titanium aluminides. Manufacturing properties and applications. Thermal Barrier coatings
26	7 Mayo	3. APPLICATIONS		LG	SM	REVISION	TEST 3
27	10-11 Mayo			SG	ST/SM	REVISION	Problems Revision