

COURSE: THERMAL ENGINEERING		
DEGREE: Aerospace Engineering	YEAR: 2nd	TERM: 2nd

The course has 29 sessions distributed in 14 weeks. The laboratory sessions are included in these sessions. The students have 2 sessions per week, excepting in one week in which they have 3 sessions.

	WEEKLY SCHEDULE								
WEEK	SESSION	GROUPS (mark X)		SPECIAL ROOM FOR SESSION (Computer	Indicate YES/NO If the session	WEEKLY SCHEDULE FOR STUDENT			
EK	N		LECTURES	SEMINARS	class room, audio-visual class room)	session needs 2 teachers	DESCRIPTION	IN CLASS HOURS	HOME- WORK HOURS (Max. 7h week)
1	1	1 Review of thermodynamics and closed system analysis. Definitions. First and Second Law of Thermodynamics for closed systems.		x		NO	Reading and study of First and Second Law of Thermodynamics applied to common closed Systems in Engineering. Solution of relevant examples. - In-class problem solution	1.66	4.67
2	2	2 Thermodynamic properties. Evaluation of properties-I: usage of properties tables and diagrams.	x			NO	Reading and study: ideal substance models and their application to the calculation of thermodynamic properties. Solution of relevant examples.	1.66	
2	3	Thermodynamic properties (cont.). Evaluation of properties-II: ideal substance models.		x		NO	- In-class problem solution	1.66	5

							- Presentation of homework results		
							- Correction of common errors		
3	4	3 Control Volume analysis. Control Volume Analysis. First and Second Law of Thermodynamics applied to the analysis of steady state Systems.	x			NO	Reading and study: First and Second Law of Thermodynamics applied to common control volumes in Engineering.	1.66	
3	5	Control Volume analysis (cont.). Description and analysis of control volume systems: nozzles, pumps, compressors, turbines, heat exchangers and valves.	x			NO	Analysis of relevant cases of control volume Systems using different substance models.	1.66	
3	6	Control Volume analysis (const.). Thermodynamic process analysis. Isentropic efficiencies of turbines, compressors, pumps, nozzles and diffusers.		x		NO	- In-class problem solution - Presentation of homework results - Correction of common errors	1.66	5
4	7	4Thermodynamic analysis of gas turbines. Brayton Cycle: description and main parameters	x			NO	Reading and study: Thermodynamic analysis of gas turbine cycles (Brayton)	1.66	
4	8	Thermodynamic analysis of gas turbines (cont.). Solution of Brayton cycles		x		NO	- In-class problem solution - Presentation of homework results - Correction of common errors	1.66	5
5	9	5 Thermodynamic analysis of internal combustion engines. Otto, Diesel and Dual cycles: description, main parameters and solution of exercises.	x			NO	Reading and study: Analysis of thermodynamic cycles for internal combustion engines. - In-class problem solution - Correction of common errors	1.66	
5	10	Laboratory session-1: Thermodynamic analysis of gas turbines using CyclePad		x	Computer room	NO	 Reading of the guideline and instructions documents Participation into the practical session and data acquisition Results analysis and critical evaluation. Preparation of the report 	1.66	7
6	11	6 Introduction to propulsion. Main propulsion systems. Integral momentum equation. Thrust and specific impulse. Required energy. Propulsive efficiency.	x			NO	Reading and study: Classification of propulsion systems in aerospace engineering. Elements present in the propulsion systems. Mass and momentum conservation analysis. Propulsion performance parameters.	1.66	5

		Introduction to propulsion (cont.).						
						- In-class cases analysis and problem solution		
c	12	Gas turbines for aircraft propulsion: turbojet, turbofan and turboprop.				- Presentation of homework results	1.66	
6	12	Constitutive elements and thermodynamic cycles. Example cases.					1.66	
						- Correction of common errors		
				Х	NO			
		QUIZ-1 on Engineering Thermodynamics and				- Review of theoretical and practical concepts - In-class evaluation activity		
7	13	Propulsion Cycles.					1.66	
		(The exact date of the exam will be confirmed during the course)						
			Х		NO			
						Reading and study: description and comparative		7
		7 Introduction to Heat Transfer.				analysis of the modes of heat transfer.		
7	14	7 Introduction to heat transier.				- In-class problem solution	1.66	
		Fundamental laws. Thermal properties of matter. Differential equation						
		of conduction.				- Correction of common errors		
				Х	NO			
		8 One-dimensional steady state heat transfer.				Reading and study. Deduction of the differential		
						equation of one-dimensional conduction. Application of		
8	15	One-dimensional conduction. Steady state conduction between flat surfaces. Steady state one-dimensional conduction in cylindrical and				the differential equation of conduction to different one- dimensional problems. Understanding of the concept of	1.66	
		spherical geometries. Thermal resistances. Application of thermal				thermal resistances in thermal circuits. Critical		
		resistances to one-dimensional conduction. Insulation.	Х		NO	insulation radius.		
						Deduction and interpretation of the temperature		5
						solution with uniform heat generation.		
	4.6					- In-class problem solution	4.55	
8	16	One-dimensional steady state heat transfer (cont.).					1.66	
						- Presentation of homework results		
		Conduction with heat sources. Flat plates and cylinders with		х	NO	Correction of common errors		
-+		generation. Solution of example cases. 9 Extended surfaces.		^		- Correction of common errors		
		J LALENGEU SUITALES.						
		Fins. Thermal analysis of fins. Performance parameters of fins.					4.55	
9	17					Reading and study: formulation and simplification of the fin differential equation. Fins of uniform section.	1.66	
						Performance parameters of fins. Annular fins. Finned		
			Х		NO	surfaces.		5
9	18	Extended surfaces (cont.) .				- In-class problem solution	1.66	
	10						1.00	
9		Example problems.				 Presentation of homework results 		

							- Correction of common errors		
10	19	10 Transient conduction of heat. Lumped capacity method. One-dimensional transient conduction	x			NO	Reading and study: deduction of the general equation of the lumped capacity method for transient problems. Analysis of different transient conduction problems. - In-class problem solution - Correction of common errors	1.66	
10	20	Laboratory session-2: Thermal analysis of two-dimensional fins using ANSYS Fluent.		x	Computer room	NO	- Correction of common errors - Reading of the guideline and instructions documents - Participation into the practical session and data acquisition - Results analysis and critical evaluation. - Preparation of the report	1.66	7
11	21	11 Convection heat transfer. Dimensionless parameters. External flow convection. Internal flow convection. Analytical and empirical relationships.	x			NO	Reading and study: major parameters describing the transfer of heat by convection in both external and internal configurations	1.66	5
11	22	Convection heat transfer (cont.). Solution of convection heat transfer cases.		x		NO	 In-class problem solution Presentation of homework results Correction of common errors 	1.66	
12	23	Laboratory session-3: External forced convection over a flat plate: numerical experiments using ANSYS Fluent.		x	Computer room	NO	 Reading of the guideline and instructions documents Participation into the practical session and data acquisition Results analysis and critical evaluation. Preparation of the report 	1.66	5
13	24	12 Heat Exchangers. Types of heat exchangers and definitions. NTU-epsilon method.	x			NO	Reading and understanding of the thermal behaviour of heat exchangers and their different configurations.	1.66	
13	25	Heat Exchangers (cont.). Analysis and design of heat exchangers.		x		NO	- In-class problem solution - Presentation of homework results - Correction of common errors	1.66	7

		13 Radiation heat transfer.							
14	26	Fundamentals. Black body and grey surfaces. Thermal resistance of radiation.	x			NO	Reading and study: description and deduction of the principal parameters describing the transfer of heat by radiation.	1.66	
14	27	Radiation heat transfer (cont.). Problems solution using thermal resistances. Application to relevant examples in aerospace engineering.		x		NO	Reading and study: Simplifying assumptions and methodologies aimed to solve thermal engineering problems. - In-class problem solution - Presentation of homework results - Correction of common errors	1.66	7
15	28	QUIZ-2 on Heat Transfer. (The exact date of the exam will be confirmed during the course)	x			NO	- Review of theoretical and practical concepts - In-class evaluation activity	1.66	5
-	29	Laboratory session-4: Thermo-hydrodynamic analysis of duct flows using ANSYS Fluent.		x	Computer room	NO	 Reading of the guideline and instructions documents Participation into the practical session and data acquisition Results analysis and critical evaluation. Preparation of the report 	1.66	5
							Subtotal 1	48.3	85.7
	Total 1 (Hours of class plus student homework hours between weeks 1-14)							133	

15		Tutorials, handing in, etc						7	
16									
17		Assessment						3	
18									7
	Subtotal 2						3	14	
	Total 2 (Hours of class plus student homework hours between weeks 15-18)					17			

150
