Universidad
Carlos III de Madrid
www.uc3m.es

COURSE: LINEAR ALGEBRA

DEGREE: Aerospace Engineering	YEAR: 1	TERM: 1

$\begin{aligned} & \sum_{\text {N }}^{\text {n }} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { SESSION } \\ & 45,46 \& 47 \end{aligned}$	DESCRIPTION	GROUP		WEEKLY PROGRAMMING FOR STUDENTS		
			LECTURE	SEMINAR	NOTES	LECTURE HOURS	STUDENT WORK
1	15/9	0. Complex Numbers 0.1 First operations - Definition. Binomial form - Sum and product - Graphical representation 0.2 Further operations - Conjugate, modulus and argument - Division	X		Book study, Appendix A [N]	1,66	6
1	16/9, \& 18/9	Selected exercises (*)		X	Additional exercises from collection and textbooks (*)	1,66	
2	22/9	0.2 Exponential form - Exponential form - Roots of a complex number	X		Book study, Appendix A [N]	1,66	6
2	23/9, \& 25/9	Selected exercises (*)		X	Additional exercises from collection and textbooks (*)	1,66	
3	29/9	1. Systems of linear equations 1.1 Solving linear equations - Matrix notation - Gaussian elimination 1.2 Row reduction and echelon forms - Uniqueness - Solutions of linear systems	X		Book study, chapters 1.1-1.2 [L]	1,66	6
3	30/9 \& 2/10	Selected exercises (*)		X	Additional exercises from collection and textbooks (*)	1,66	
4	6/10	1.3 Vector equations - Vectors and linear combinations - Subset spanned by vectors 1.4 The matrix equation $A x=b$ - Matrix times vector - Solutions of a SLE	X		Book study, chapters 1.3-1.5 [L]	1,66	6
4	7/10 \& 9/10	Selected exercises (*)		X	Additional exercises from collection and textbooks (*)	1,66	

5	13/10	2. Matrices 2.1 Matrix Operations - Sum and product by scalars - Product - Transpose of a matrix 2.2 Inverse of a matrix - Relation with the uniqueness of $A x=b$ - Computation	X		Book study, chapters 2.1-2.3 [L]	1,66	6
5	14/10 \& 16/10	Selected exercises (*)		X	Additional exercises from collection and textbooks (*)	1,66	
6	20/10	3. Vector spaces 3.1 Vector Spaces and Subspaces - Sub-spaced generated by vectors - Null Space and Columns space	X		Book study, chapters 2.8, 4.1-4.2 de [L]	1,66	
6	21/10, \& 23/10	Midterm test on chapters 0,1 and 2 Selected exercises		X	Odd numbered exercises. Compare with solutions (*)	1,66	6
7	27/10	3.2 Linear Independence and basis - The spanning set theorem - Basis for $\operatorname{Nul}(\mathrm{A})$ and $\operatorname{Col}(\mathrm{A})$	X		Book study, chapters 1.7, 2.9, 4.3 [L]	1,66	
7	28/10 \& 30/10	Selected exercises (*)		X	Additional exercises from collection and textbooks (*)	1,66	
8	3/11	3.3 Coordinate Systems 3.4 The dimension of a vector space - The basis theorem - The dimensions of $\operatorname{Nul}(\mathrm{A})$ and $\operatorname{Col}(\mathrm{A})$ 3.5 Rank - The Rank theorem - 3.6 Change of basis	X		Book study, chapters 4.4-4.5 [L] and 2.9, 4.6-4.7 [L]	1,66	6
8	4/11 \& 6/11	Selected exercises (*)		X	Additional exercises from collection and textbooks (*)	1,66	
9	10/11	3.7 Linear transformations - The matrix of a linear transformation - Kernel and range of a linear transformation	X		Book study, chapters 1.8-1.9 [L]	1,66	6
9	11/11 \& 13/11	Selected exercises (*)		X	Additional exercises from collection and textbooks (*)	1,66	
10	17/11	4. Eigenvalues and eigenvectors 4.1 Definitions - Revisiting determinants - Linear Independence of eigenvalues - Eigenspaces 4.2 The characteristic equation	X		Book study, chapters 3.1 -3.2, 5.1-5.2 [L]	1,66	6
10	18/11 \& 20/11	Selected exercises (*)		X	Additional exercises from collection and textbooks (*)	1,66	

11	24/11	4.3 Diagonalization - The diagonalization theorem - Diagonalizating matrices	X		Book study, chapter 5-3 [L]	1,66	
11	25/11 \& 27/11	Selected exercises		X	Odd numbered exercises. Compare with solutions (*)	1,66	
12	1/12	5. Orthogonality 5.1 Inner product, length and orthogonality 5.2 Orthogonal sets - Orthogonal and orthonormal basis - Orthogonal matrices	X		Book study, chapters 6.1-6.2 [L]	1,66	6
12	2/12 \& 4/12	Midterm test on chapters 3 and 4 Selected exercises (*)		X	Additional exercises from collection and textbooks (*)	1,66	
13	4/12	5.3 Orthogonal projection - The best approximation theorem 5.4 The Gram-Schmidt process	X		Book study, chapters 6.3-6.4 [L]	1,66	6
13	9/12 \& 11/12	Selected exercises (*)		X	Additional exercises from collection and textbooks (*)	1,66	
14	15/12	5.5 Least square problems - Normal equations 6. Diagonalization of symmetric matrices - Spectral theorem	X		Book study, chapter 6.5 [L] and	1,66	6
14	16/12 \& 18/12	Selected exercises (*)		X	Additional exercises from collection and textbooks (*)	1,66	6
					Subtotal 1	50	
			Total 1 (Hours of class plus student homework hours between weeks 1-15)			140	
	16-18	Assessment, evaluation preparation. Final Test				3	7
					Subtotal 2	3	7
			Total 2 (Hours of class plus student homework hours between weeks 16-18)				10
TOTAL (Total 1 + Total 2)							150

${ }^{(*)}$) Discussion of selected exercises from the course collection and from the recommended textbooks (W.K. Nicholson's ([N]) or D. C. Lay's ([L])) related with the theory session of the week. Compare with the solutions in the book

