Vicerrectorado de Estudios
Apoyo a la docencia y gestión del grado

COURSE: ENGINEERING GRAPHICS

DEGREE: BACHELOR IN ENERGY ENGINEERING	YEAR: 1	TERM: $\mathbf{2}$

WEEKLY PLANNING								
w	\mathbf{S}	DESCRIPTION	TEACHING (mark X)		SPECIAL ROOM FOR SESSION (Computer class room, audio-visual class room)	WEEKLY PROGRAMMING FOR STUDENT		
			L E C T U R E S	S E M I N A R S		DESCRIPTION	CLASS HOURS $(1,66=50+50$ min)	HOMEWORK HOURS (Max. Estim. 6,5h)
1	1	LECTURE 1. INTRODUCTION TO ENGINEERING GRAPHICS AND THE REPRESENTATION SYSTEMS. STANDARDIZATION.	X		NO	Knowing different representation systems and their basic rules.	1.66	5.0
	2	SOLID EDGE ENVIRONMENT. FIRST OPERATIONS.		X	YES	Starting to work with a CAD software.	1.66	
2	3	LECTURE 2. ORTHOGRAPHIC PROJECTION (OP): BASICS.	X		NO	Reviewing basic knowledge about Orthographic Projection (OP).	1.66	5.0
	4	BASIC EXERCISES ABOUT ORTHOGRAPHIC PROJECTION (OP)		X	NO	Realizing basic exercises about OP.	1.66	
3	5	LECTURE 3. OP: REVOLUTION METHOD, FOLD LINE METHOD AND CHANGE OF PROJECTION PLANES.	X		NO	Learning how and when doing apply revolution method, fold line method and change of projection planes.	1.66	5.0
	6	EXERCISES ABOUT OP: REVOLUTION METHOD, FOLD LINE METHOD AND CHANGE OF PROJECTION PLANES.		X	NO	Applying revolution method, fold line method and change of projection planes to solve geometric problems.	1.66	
4	7	LECTURE 4. OP: DISTANCES AND ANGLES.	X		NO	Learning to represent and measure distances and angles in OP.	1.66	5.0
	8	EXERCISES ABOUT OP: DISTANCES AND ANGLES.		X	NO	Solving geometric problems about distances and angles.	1.66	
5	9	PARTIAL EXAM OF ORTHOGRAPHIC PROJECTION (OP).	X		NO	Partial exam about the application of the OP knowledge.	1.66	65

WEEKLY PLANNING								
$\begin{gathered} \mathrm{W} \\ \mathrm{E} \\ \mathrm{E} \\ \mathrm{~K} \end{gathered}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{E} \\ & \mathrm{~S} \\ & \mathrm{~S} \\ & \mathrm{I} \\ & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	DESCRIPTION	TEACHING (mark X)		SPECIAL ROOM FOR SESSION (Computer class room, audio-visual class room)	WEEKLY PROGRAMMING FOR STUDENT		
			L E C T U R E S	$\begin{gathered} \mathrm{S} \\ \mathrm{E} \\ \mathrm{M} \\ \mathrm{I} \\ \mathrm{~N} \\ \mathrm{~A} \\ \mathrm{R} \\ \mathrm{~S} \\ \hline \end{gathered}$		DESCRIPTION	CLASS HOURS $(1,66=50+50$ $\min)$	HOMEWORK HOURS (Max. Estim. 6,5h)
	10	SOLID EDGE PART ENVIRONMENT.		X	YES	Learning CAD operations to generate 3D parts.	1.66	
6	11	LECTURE 5. AXONOMETRIC SYSTEM.	X		NO	Learning the basics of the axonometric system.	1.66	6.5
	12	EXERCISES ABOUT AXONOMETRIC SYSTEM		X	NO	Applying the axonometric system concepts to represent parts.	1.66	
7	13	LECTURE 6. VIEWS.	X		NO	Applying OP concepts to represent parts.	1.66	6.5
	14	EXERCISES ABOUT VIEWS.		X	NO	Representing parts in dihedral views.	1.66	
8	15	LECTURE 7. SECTIONS, CUTS AND BREAKS.	X		NO	Applying OP concepts to represent cuts.	1.66	6.5
	16	EXERCISES ABOUT SECTIONS, CUTS AND BREAKS.		X	NO	Representing cuts in parts.	1.66	
9	17	LECTURE 8. DIMENSIONING AND REPRESENTATION.	X		NO	Learning the basics standards to dimensioning and representation.	1.66	6.5
	18	EXERCISES ABOUT DIMENSIONING AND REPRESENTATION.		X	NO	Learning to dimension drafts.	1.66	
10	19	PARTIAL EXAM OF VIEWS AND ISOMETRIC.	X		NO	Partial exam about the application of the views and isometric knowledge.	1.66	6.5
	20	SOLID EDGE DRAFT ENVIRONMENT. DIMENSIONING.		X	YES	Learning to generate and dimension a draft with CAD.	1.66	
11	21	LECTURE 10. STANDARD ELEMENTS.	X		NO	Learning to identify the most usual standard parts.	1.66	6.5
	22	LECTURE 11. ASSEMBLY DRAFTS.		X	YES	Learning to realize and understand an assembly draft. Learning to assembly parts with CAD.	1.66	
12	23	EXERCISES ABOUT ASSEMBLY DRAFTS.	X		NO	Practising to realize and understand an assembly draft.	1.66	6.5
	24	SOLID EDGE ASSEMBLY ENVIRONMENT.		X	NO	Learning to assembly parts with CAD.	1.66	
13	25	LECTURE 12. DETAILED DRAFTS.	X		NO	Learning to realize a detailed drawing.	1.66	6.5
	26	EXERCISES ABOUT DETAILED DRAFTS.		X	NO	Applying the theory to realice detailed drawings.	1.66	
14	27	LECTURE 13. DIMENSIONAL AND GEOMETRIC TOLERANCES.	X		NO	Learning the tolerance concept and how to calculate tolerances.	1.66	65

WEEKLY PLANNING								
$\begin{gathered} \mathrm{w} \\ \mathrm{E} \\ \mathrm{E} \\ \mathrm{~K} \end{gathered}$	$\begin{gathered} \mathrm{S} \\ \mathrm{E} \\ \mathrm{~S} \\ \mathrm{~S} \\ \mathrm{I} \\ \mathrm{O} \\ \mathrm{~N} \end{gathered}$	description	teaching (mark X)		SPECIAL ROOM FOR SESSION (Computer class room, audio-visual class room)	WEEKLY PROGRAMMING FOR STUDENT		
			$\begin{aligned} & \mathrm{L} \\ & \mathrm{E} \\ & \mathrm{C} \\ & \mathrm{~T} \\ & \mathrm{U} \\ & \mathrm{R} \\ & \mathrm{E} \\ & \mathrm{~S} \end{aligned}$	$\begin{gathered} S \\ E \\ \text { E } \\ \text { M } \\ \text { N } \\ \text { A } \\ \text { R } \\ \hline \end{gathered}$		DESCRIPTION	$\begin{aligned} & \text { CLASS HOURS } \\ & \begin{array}{c} (1,66=50+50 \\ \mathrm{min}) \end{array} \end{aligned}$	HOMEWORK HOURS (Max. Estim. 6,5h)
	28	EXERCISES ABOUT DIMENSIONAL AND GEOMETRIC TOLERANCES.		X	NO	Applying the concept and calculation of tolerances to design problems.	1.66	
	29	PARTIAL EXAM OF ASSEMBLY AND TOLERANCES.		X	YES	Partial exam about the application of assembly and tolerances knowledge.	1.66	3.25
Subtotal 1							48	88
Total 1 (Hours of class plus student homework)							136	
15		Tutorials, handing in, etc				Finishing a project that summarizes all the acquired knowledge.	3.6	-
16 17 18		Assessment					4	10
Subtotal 2							8	10
Total 2 (Hours of class plus student homework)							18	
TOTAL (Maximun 160 horas)							154	

