Course: Topics in Advanced Econometrics		
GRADO: Economics/Law and Economics/International Studies and Economics/Philosophy, Politics and Economics	YEAR: 3-4	SEMESTER: 1

Week	Lecture	e DESCRIPTION OF THE LECTURE'S TOPICS	GROUP (Mark X)		Classroom	STUDENT WORK DURING THE WEEK		
			Lecture	Recitation	on	DESCRIPTION	Number of Lecture Hours	Number of Hours of Work per Week
1		Causal relationships and partial effects: conditional expectations, linear projections and partial effects. Elasticities and semi-elasticities. Linear models vs nonlinear models.				Read Wooldrige Ch. 1	1,5	6
1		Exercises: Properties of conditional expectations and linear projections. Interpretation of partial effects in linear models and nonlinear. Average of the partial effects.		x		Homework on Problem Set 1.	1,5	
2		Basic asymptotic theory 1: Convergence in probability and distribution. Law of Large Numbers and Central Limit Theorems.				Read Wooldrige Ch. 3.1-3.4, Hayashi, Ch. 2.1	1,5	6
2		Exercises: Applications of Slutsky's and continuous map theorems. Consistency and asymptotic distribution of the sample moments.		x		Homework on Problem Set 1.	1,5	
3		Basic asymptotic theory 2: The principle of analogy. CAN estimators. The delta method.	Х			Wooldrige. Ch. 3.5	1,5	6
3		Exercises: Asymptotic distribution of the functions of the sample means. Applications of the delta method.		х		Homework on Problem Set 1.	1,5	
4		Least Squares in the uniequational linear model 1: OLS, GCM and quasi-maximum likelihood. Asymptotic consistency and normality in classical and non-standard conditions.	Х			Read Wooldrige. Ch. 4.1-4.2	1,5	6
4		Exercises: Asymptotic efficiency of the CGM and ML. Trending regressors.		Х		Homework on Problem Set 2.	1,5	
5		Least Squares in the uniequational linear model 2: Segmented regression. Omitted variables, proxy variables and measurement errors.	Х			Read Wooldrige. Ch. 4.3-4.4	1,5	6

5	10	Exercises: Asymptotic bias due to omitted variables and measurement errors.		x	Homework on Problem Set 2.	1,5	
6	11	Least Squares in the uniequational linear model 3. Consistent estimation of the covariance and asymptotic variance standard and non-standard conditions. Confidence interval.			Read Wooldrige Ch. 4.3-4.4, Hayashi Ch. 2.5	1,5	6
6	12	Exercises: estimators of the residual variance. Asymptotic inference when innovations are autocorrelated in an unknown way.		x	Homework on Problem Set 2.	1,5	
7	13	Contrasting linear constraints on parameters in the uniequational model 1: Linear constraints and constrained least squares. Consistency, asymptotic power, local alternatives and efficiency. Wald contrast.	x		Read Wooldrige. Ch. 3.4, 4.2, 6.2, Hayashi Ch 2.4, 2.6, 3.7.	1,5	6
7	14	Exercises: Derivation of the asymptotic distribution of the restricted least squares. Derivation of the asymptotic distribution of Wald contrast in local alternatives.		x	Homework on Problem Set 3.	1,5	
8	15	Contrasting linear constraints on the parameters in the uniequational model 2: Likelihood Ratio and Lagrange Multiplier. Contrasts for homoscedasticity and absence of autocorrelation.	x		Read Wooldrige. Ch. 3.4, 4.2, 6.2, Hayashi Ch 2.4, 2.6, 3.7.	1,5	6
8	16	Exercises: Comparison between contrasts.		x	Homework on Problem Set 3.	1,5	
9	17	MIDTERM EXAM	х		EXAM	1,5	6
9	18	Estimation of instrumental variables in the uniequational linear model 1: Identification and instruments. Rank and order conditions. Consistency and asymptotic normality of MC2E.	x		Read Wooldrige Ch. 5.1-5.2. Hayashi Ch. 3.1- 3.3	1,5	
10	19	Exercises: Asymptotic distribution of MC2E under non- standard conditions. Asymptotic variance estimator.		x	Homework on Problem Set 3.	1,5	6
10	20	Estimation of instrumental variables in the uniequational linear model 2: Inference with MC2E. Weak instrument and efficiency problems. Endogeneity tests and overidentification restrictions.	x		Read Wooldrige Ch. 5.2	1,5	
11	21	Exercises: Asymptotic efficiency of MC2E. Implementation of endogeneity contrast and overidentification restrictions.		x	Homework on Problem Set 4.	1,5	6

11	22	Linear equation systems 1: OLS and GCM in SUR models.	Х		Read Wooldrige Ch 7 1,	,5	1
		Feasible CGM. Contrasting constraints in the equations.					
12	23	Exercises: Efficiency in SUR models. Inference in SUR			Homework on Problem Set 4. 1,	,5	6
		models. Exercises: Program CGM in a SUR model using R.		х			
12	24	Linear equation systems 2: Identification in models of	Х		Read Wooldrige Ch. 8, 9.1-9.5. Hayashi Ch. 1,	,5	
		simultaneous equations with exclusion and general			4.1-4.5		
		restrictions. MC2E equation by equation. MC2E vs MC3E.					
13	25	Exercises: Asymptotic distribution of the MC3E.		х	Homework on Problem Set 4. 1,	,5	6
		Contrasts of linear constraints.					
13	26	Extreme Estimators 1: Maximum conditioned likelihood,	Х		Read Wooldrige Ch. 12.1-12.3 Hayashi 7.1-7.3 1,	,5	
		non-linear least squares, GMM. ID. Asymptotic					
		properties of extreme estimators. Numeric optimization					
14	27	Exercises: Examples of models with limited dependent		х	Study for the exam 1,	,5	6
		variable. Logit, Tobit and Count.					
14	28	END-OF-TERM EXAM			EXAM 1,	,5	
SUBTOTAL							6
15		Make ups, tutoring, homework assignments, etc.				8	
16-18		Final exam/Studying for the final exam.			10	6	
TOTAL							0