

COURSE: ADVANCED COMPOSITE MATERIALS

MÁSTER: MASTER IN MATERIALS SCIENCE AND ENGINEERING

Professors: Jon Molina Aldareguia / Claudio Lópes

CUATRIMESTRE: 1

WEEKLY PLANING								
WEEK	LECTURE	DESCRIPTION	GROUPS (mark X)		SPECIAL ROOM FOR SESSION (Computer class room, audio-	WEEKLY PROGRAMMING FOR STUDENT		
			1	2	visual class room)	DESCRIPTION	CLASS HOURS	HOMEWORK HOURS (Max. 7h week)
1	1	 Introduction Present and future of composite materials Multifunctional composites PART 1. Structure and properties of composite materials Types of matrices Ceramic and metallic matrices. Polymeric matrices: thermosets and thermoplastics: curing parameters. 	X			Review of contents delivered in class	1.5	2
	2	3. Types of reinforcement 3.1 Carbon, glass, polyamides, carbides, alumina and aluminosilicate reinforcements. Structure and properties. 3.2 Geometry and architecture of the reinforcement: short fibers, continuous fibers, textiles and laminates. 3.3. Interphases. Adhesion mechanisms. Mechanical characterization of interfaces.	X			Review of contents delivered in class	1.5	2
2	3	4. Processing of metal-matrix composites 4.1. Solid-state processing 4.2 Liquid state processing 5. Processing of ceramic matrix composites	X			Review of contents delivered in class	1.5	2

		5.1 Powder consolidation, impregnation and infiltration techniques.				
	4	6. Processing of polymer matrix composites6.1 Prepreg consolidation6.2 Infiltration methods6.3 Other techniques: filament winding, pultrusion,	Х	Review of contents delivered in class Visit to external company	3	2
3	5	7. Quality control 7.1 Certification 7.1 Non-destructive evaluation: ultrasounds and X-Rays.	Х	Review of contents delivered in class.	1.5	2
	6	8. Recycling of composite materials	X	Review of contents delivered in class. Individual evaluation test	1.5	4
4	7	PART 2. Mechanics of composite materials 9. Elastic behavior of long fiber composites 9.1 Elastic anisotropy 9.2 Stiffness tensor 9.3 Effect of fiber length. Shear Lag models	Х	Review of contents delivered in class	1.5	2
	8	Exercises – Elastic constants of a unidirectional lamina	Х	Review of contents delivered in class. Individual assessment report.	1.5	4
5	9	10. Laminate theory 10.1 Orthotropic lamina 10.2 Elastic constants of a unidirectional lamina 10.3 Classical theory of laminates	X	Review of contents delivered in class	1.5	2

	10	Computer practice – Stress and strain analysis of composite laminae and laminates by the finite element method (ABAQUS)	X	Computer lab	Analysis of computer practice. Group assessment report.	1.5	4
6	11	11. Failure of composite materials 11.1 Failure modes: longitudinal, transversal, shear, compression 11.2 Failure criteria	X		Review of contents delivered in class	1.5	2
	12	Computer practice – Faliure analysis of laminates by the finite element method (ABAQUS)	X	Computer lab	Analysis of computer practice. Group assessment report.	1.5	4
7	13	12 Damage in composite materials 12.1 Mechanisms and contributions to the fracture energy 12.2 Damage tolerance 12.3 Continuum damage models 12.4 Cohesive elements	X		Review of contents delivered in class	1.5	2
	14	Computer practice – Analsyis of damage propagation in laminates by the finite element method (ABAQUS)	Х	Computer lab	Analysis of computer practice. Group assessment report. Preparation of final exam.	1.5	4
TOTAL HORAS							38