

SUBJECT:	Biomedical Image Processing		
MASTER DEG	REE: Information & Health Engineering	ECTS: 6	QUARTER: 1st

TIMETABLE FOR THE SUBJECT									
WEEK	SESSION	DESCRIPTION OF EACH SESSION	GROUP (X mark)		Indicate if a different lecture room is	HOMEWORK PER WEEK			
			1	2	needed (computer, audiovisual, etc.)	DESCRIPTION	ATTENDING HOURS	HOMEWORK Max. 7H/WEEK	
1	1	 Overview of the subject Introduction to digital images 	X			Digital Images (study)	1,5	2,25	
1	2	 Basic Image Processing Techniques Pixelwise operations Filtering 	x			Basic Intensity transformations. Histograms. Histogram Equalization. Low-pass filters. High-pass filters. Gaussian Filters. Statistical ordered filters (Study & practical exercises)	1,5	3,25	
2	3	 Basic Image Processing Techniques Frequency Domain Image Restoration 	x			FT and properties. Filtering in the Frequency Domain. Image restoration: noise and linear distortion. (Study & practical exercises)	1,5	3,25	
2	4	Lab 1 Managing images	X		Lab	Reading and showing images. Color spaces. (practical computer implementations)	1,5	3,25	
3	5	4. Edge Detection	X			Gradient and Laplacian. Discrete approximations. Canny Edge Detector. Edge sharpening. (Study & practical exercises)	1,5	3,25	

3	6	Lab 2	Х	Lab	Basic Filters and template matching.	1,5	3,25
		Filtering			(practical computer implementations)		
4	7	5. Segmentation (1)	Х		Thresholding. Clustering.	1,5	3,25
					(Study & practical exercises)		
4	8	5. Segmentation (2)	X		Graphs.	1,5	3,25
					(Study & practical exercises)		
5	9	6. Morphological image processing	X		Basic morphological operators.	1,5	3,25
					(Study & practical exercises)		
5	10	Lab 3	X	Lab	Threshold-based image segmentation. Clustering-based	1,5	3,25
		Segmentation			image segmentation. (practical computer implementations)		
6	11	7. Image descriptors (1)	X		Simple descriptors: shape, texture and color.	1,5	3,25
					PCA. (Study & practical exercises)		
6	12	7. Image descriptors (2)	x		Hough transform. Local descriptors.	1,5	3,25
					(Study & practical exercises)		
7	13	8. Image classification	X		Learning by example paradigm. K-NN. Linear classifiers.	1,5	3,25
					Linear SVMs. (Study & practical exercises)		
7	14	Lab 4	X	Lab	Image descriptors for classification.	1,5	3,25
		Image descriptors for classification			(Practical computer implementations)		

8	15	9. 3D visualization	X		Multiplanar reconstructions 3D visualization: General concepts; surface rendering and volume rendering (Study & practical exercises)	1,5	3,25
8	16	Lab 5 Visualization	X	Lab	Syn3D (Practical session)	1,5	3,25
9	17	10. Wavelets and Multiresolution (1)	x		Wavelet transform. Pyramids. (Study & practical exercises)	1,5	3,25
9	18	11. Wavelets and Multiresolution (2)			Applications in medical imaging. (Study & practical exercises)	1,5	3,25
10	19	Lab 6 Wavelets and Multiresolution	x	Lab	Spectrogram; Continuous Wavelet transform; Image denoising; Image compression (Practical session)	1,5	3,25
10	20	11. Registration (1)	x		Interpolation and geometrical transformations. Feature- based registration (Study & practical exercises)	1,5	3,25
11	21	11. Registration (2)	X		Intensity-based registration (Study & practical exercises)	1,5	3,25
11	22	Lab 7 Registration	X	Lab	Image registration (Practical computer implementation)	1,5	3,25
12	23	12. Advanced segmentation (1)	X		Active contours. Level sets. (Study & practical exercises)	1,5	3,25

12	24	13. Advanced segmentation (2)	X		Atlas-based segmentation (Study & practical exercises)	1,5	3,25
13	25	Lab 9 Advanced segmentation	X	Lab	Atlas-based segmentation of brain structures (Practical computer implementation)	1,5	3,25
13	26	14. Spectral image analysis	x		Spectral unmixing and abundance estimation (Study & practical exercises)	1,5	3,25
14	27	Lab 10 Spectral image analysis	X	Lab	Spectral Unmixing (Practical computer implementation)	1,5	3,25
14	28	Siemens Syngo Academy	X			1,5	3,25
TOTAL HOURS 4							90