

COURSE: ORGANIC PHOTONICS (3 ECTS)		
MASTER: Master in Photonics Engineering	YEAR: 2017-2018	TERM: 1st

		w	EEKLY PLA	NNING					
SESSION	DESCRIPTION	GROUPS rc (mark X) s (ca cla		GROUPS (mark X)		Special room for session (computer classroom,	WEEKLY PROGRAMMING FOR S	TUDENT	
		LECTURES	SEMINARS/ LAB ¹	classroom)	DESCRIPTION	CLASS HOURS	HOMEWORK HOURS		
1	Basic concepts. Absorption/emission in organic molecules. Primary photophysic processes.	x			Introduction to the subject. Review of concepts: rate constants, lifetime, quantum yield, radiationless processes.	1,5			
2	Fundamentals of Organic Semiconductors. Small molecules and polymers. Fabrication processes	x			Previous reading and revision of class materials.	1,5	4		
3	Organic light-emitting diodes. Injection layers. Fluorescence and phosphorescence.	x			Previous reading and revision of class materials.	1,5			
4	Organic light-emitting diodes. OLED displays. Rigid and flexible structures. Lighting.	x			Previous reading. Comparison of commercial products for mobiles and large-area TV	1,5	10		
5	Organic photodetectors. Organic photovoltaic cells. Performance.	x			Previous reading and revision of class materials.	1,5			
6	Polarization of light. Circular and linear polarizers and		x		Using a numerical tool to calculate evolution	1,5	14		

	retarders. Jones calculus. Müller matrices			of polarization states. Poincaré sphere.		
7	Liquid crystals. Mesophases, physical properties, anisotropy, birefringence	х		Previous reading. Observation of actual materials, fluidity, orientation, melting.	1,5	
8	Liquid crystals. Cell manufacturing, surface conditioning. Switching and switching modes.	x		Previous reading. Home exercises with actual cells and polarizers.	1,5	
9	Liquid crystal displays. Addressing modes. Multiple Dynamic response. Active matrix LCDs	exing. x		Previous reading and revision of class materials.	1,5	
10	Liquid crystal displays . Microdisplays, large-area displays, HMDs, HUDs, simulators, virtual reality.	x		Previous reading and revision of class materials.	1,5	
11	LC spatial light modulators. LCoS, phase gratings, Wavelength-selective switching (WSS), holography	x /.		Previous reading. Search for applications of liquid crystals in optical communications.	1,5	
12	LC photonic devices . Beam steering, tunable prism lenses, vortex generators. LCs and optical fibers.	ns and	x	Handling actual devices. Discussion of observed phenomena. Calculations.	1,5	
13	Organic waveguides. Guided modes, coupling, pas waveguides, tunable cladding	ssive x		Previous reading and revision of class materials.	1,5	6
14	Integrating organic devices. Approach to photonic devices made of organic emitters, waveguides, modulators and detectors.		x	Previous work suggesting different approaches. Discussion on actual devices.	1,5	
	¹ A maximum of 1-2 lab sessions			Subtotal 1	21	34
	Total 1 (Ho	ours of class plus s	student homew	ork hours between weeks 1-7)	5	5

	Tutorials, handing in, etc				Solving any remaining question	1	.0
15	Assessment				Studying the documentation for the final assessment.	3	7
					Subtotal 2	3	17
	Total 2 (Hours o	f class plus s	student hor	nework houi	rs at week 8)	2	0

|--|