

COURSE: TECHNIQUES AND TOOLS FOR THE DESIGN OF ELECTRONIC SYSTEMS MASTER: ELECTRONIC SYSTEMS ENGINEERING AND APPLICATIONS YEAR: 2016-17 TERM: 1st

	WEEKLY PLANNING							
WEEK	SESSION	DESCRIPTION		DUPS rk X)	Special room for session (computer classroom,	WEEKLY PROGRAMMING FOR	STUDENT	
	4		LECTURES	SEMINARS/ LAB ¹	audio-visual classroom) S/	DESCRIPTION	CLASS HOURS	HOMEWORK HOURS (Max. 7h week)
1	1	T1. Electronic Systems Overview. Organizationalissues	x			Goals and Strategy, Application examples Tools Partitioning & Testing Answering questions about background.	1,5	3
1	2	T2. Design Flow and Development techniques (I)	x			HW Prototyping techniques Basic Design Flow. Reference for IC design and embedded systems	1,5	
2	1	T2. Design Flow and Development techniques (II)	x			Modeling, CAD and EDA tools Design flow Basic Design Flow. Reference for IC design and embedded systems	1,5	4
2	2	T2. Design Flow and Development techniques (III)	х			Modeling, CAD and EDA tools Design flow	1,5	

						Basic Design Flow. Reference for IC design]
						and embedded systems		
3	1	T3. Signals and Systems review /Non-linear systems	x			Digital Signal Processing Review Taxonomy of signals and systems Some useful signals Common Units Introduction to DSP and Applications Z Transform Non linear systems	1,5	5
3	2	T4. Power spectrum and Frequency Response(I)	x			FFT algorithm Power Spectrum Estimation Digital Signal Processing, frequency domain	1,5	
4	1	T4. Power spectrum and Frequency Response(II)	x		x	Practical examples in Matlab	1,5	
4	2	T5. Modeling of Sampled systems (I)	x			Uniform sampling, decimation, interpolation Multirate systems Irregular sampling Continuous-/Discrete-Time mapping Numerical Solvers	1,5	5
5	1	T5. Modeling of Sampled systems (II)	x		x	Matlab examples Practical examples in Matlab	1,5	
5	2	T6. Modeling of Noise and Quantization error(I)	x			Random Signals and Stochastic Processes. Filtered noise Quantization error Oversampling Dithering	1,5	5
5		(Dietmar Straüβnigg) Seminar on Digital Filters	x	x	х	3h seminar including practical exercises		
6	1	T6. Modeling of Noise and Quantization error (II) Matlab examples	x		x	Practical examples in Matlab	1,5	- 5
6	2	T7. Digital Filters (I)	x			IIR filters Exampes	1,5	
7	1		х			FIR filters	1,5	

		T7. Digital Filters (II)				Examples		5
7	2	Test T1-T6	x				1,5	
8		Break (assessments of 3ECTS courses)						
9	1	T8. System Identification (I)	x			Concepts in System identification	1,5	- 5
9	2	T8. System Identification (II)			x	Examples	1,5	C
10	1	T9. Modeling and Specifying Digital Functions (I)	x			Specification of digital functions	1,5	F
10	2	T9. Modeling and Specifying Digital Functions (II)	x			Examples	1,5	5
11	1	T10. Test and Functional Validation (I)	x			Test Concepts	1,5	F
11	2	T10. Test and Functional Validation (II)	x			Examples	1,5	5
12	1	Test T7-T10	x				1,5	C
12	2	T11. Guided Practical example (I)		x	x	Complete guided activities	1,5	6
13	1	T11. Guided Practical example (II)		x	x	Complete guided activities	1,5	_
13	2	T11. Guided Practical example (III)		x	x	Complete guided activities	1,5	5
14	1			х	х	Complete guided activities	1,5	

Total 1 (Hours of class plus student homework hours between weeks 1-15)					1:	10			
		¹ A maximum of 1-2 lab sessions					Subtotal 1	42	68
15	2	T12. Examples of nonlinear systems		х			Examples	1,5	C
15	1	T12. Nonlinear systems modelling		х			Concepts an tools	1,5	5
14	2	T11. Guided Practical example (V)			x	x	Complete guided activities	1,5	
		T11. Guided Practical example (IV)							5

1-7 9-15	Tutorials, handing in, etc					2	25
16	Assessment					3	12
					Subtotal 2	3	37
	Total 2 (Hours of class plus student homework hours at week 8)				4	10	

TOTAL (Total 1 + Total 2)	150
---------------------------	-----