COURSE: ENGINEERING GRAPHICS

DEGREE: BACHELOR IN ENERGY ENGINEERING	YEAR: 1	TERM: 2

WEEKLY PLANNING								
$\begin{gathered} \text { W } \\ \text { E } \\ \text { E } \\ \text { K } \end{gathered}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{E} \\ & \mathrm{~S} \\ & \mathrm{~S} \\ & \mathrm{I} \\ & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	DESCRIPTION	TEACHING (mark X)		SPECIAL ROOM FOR SESSION (Computer class room, audio-visual class room)	WEEKLY PROGRAMMING FOR STUDENT		
			L E C T U R E S	S E M I N A R S		DESCRIPTION	CLASS HOURS $(1,66=50+50$ min)	HOMEWORK HOURS (Max. Estim. $6,5 \mathrm{~h}$)
1	1	INTRODUCTION TO TECHNICAL DRAWING AND REPRESENTATION SYSTEMS. NORMALIZATION	X		NO	Knowing different representation systems and their basic rules	1,66	5,0
	2	SOLID EDGE ENVIROMENT. FIRST OPERATIONS		X	YES	Starting to work with a CAD program	1,66	
2	3	ORTHOGRAPHIC PROJECTION (OP): BASICS	X		NO	Reviewing basic knowledge about Orthographic projection (OP)	1,66	5,0
	4	BASIC EXERCISES ABOUT ORTHOGRAPHIC PROJECTION (OP)		X	NO	Realizing basic exercises about Orthographic projection	1,66	
3	5	OP: REVOLUTION METHOD, FOLD LINE METHOD AND CHANGE OF PROJECTION PLANES.	X		NO	Learning how and when doing apply revolution method, fold line method and change of projection planes.	1,66	5,0
	6	EXERCISES ABOUT OP: REVOLUTION METHOD, FOLD LINE METHOD AND CHANGE OF PROJECTION PLANES.		X	NO	Applying revolution method, fold line method and change of projection planes to solve geometric problems.	1,66	
4	7	OP: DISTANCES AND ANGLES	X		NO	Learning to represent and measure distances and angles in OP	1,66	5,0
	8	EXERCISES ABOUT OP: DISTANCES AND ANGLES		X	NO	Solving geometric problems about distances and angles	1,66	
	9	EXAM ABOUT OP	X		NO	Exam about OP concepts	1,66	

WEEKLY PLANNING								
$\begin{gathered} \text { W } \\ \text { E } \\ \text { E } \end{gathered}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{E} \\ & \mathrm{~S} \\ & \mathrm{~S} \\ & \mathrm{I} \\ & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	DESCRIPTION	TEACHING (mark X)		SPECIAL ROOM FOR SESSION (Computer class room, audio-visual class room)	WEEKLY PROGRAMMING FOR STUDENT		
			L E C T U R E S	$\begin{gathered} \mathrm{S} \\ \mathrm{E} \\ \mathrm{M} \\ \mathrm{I} \\ \mathrm{~N} \\ \mathrm{~A} \\ \mathrm{R} \\ \mathrm{~S} \\ \hline \end{gathered}$		DESCRIPTION	CLASS HOURS $(1,66=50+50$ $\min)$	HOMEWORK HOURS (Max. Estim. 6,5h)
5	10	SOLID EDGE PART ENVIRONMENT		X	YES	Learning CAD operations to generate 3D parts	1,66	6,5
6	11	AXONOMETRIC SYSTEM	X		NO	Learning the bases of the axonometric system	1,66	6,5
	12	AXONOMETRIC SYSTEM II		X	NO	Applying the axonometric system concepts to represent parts	1,66	
7	13	VIEWS	X		NO	Applying the OP concepts to represent parts	1,66	6,5
	14	EXERCISES ABOUT VIEWS		X	NO	Realizing exercises about representing parts	1,66	
8	15	SECTIONS, CUTS AND BREAKS	X		NO	Applying the OP concepts to represent parts	1,66	6,5
	16	EXERCISES ABOUT SECTIONS, CUTS AND BREAKS		X	NO	Realizing exercises about representing parts	1,66	
9	17	DIMENSIONING AND REPRESENTATION I	X		NO	Learning the basic standards about dimensioning and representation	1,66	6,5
	18	EXERCISES ABOUT DIMENSIONING I		X	NO	Applying the OP concepts to represent and dimension parts	1,66	
10	19	DIMENSIONING AND REPRESENTATION II	X		NO	Learning the basic standards about dimensioning and representation	1,66	6,5
	20	SOLID EDGE DRAFT ENVIROMENT. DIMENSIONING		X	YES	Learning to generate and dimension a draft with CAD	1,66	
11	21	STANDARD PARTS	X		NO	Learning to identify the most usual standard parts	1,66	6,5
	22	SOLID EDGE ASSEMBLY ENVIROMENT		X	YES	Learning to assembly parts with CAD	1,66	
12	23	ASSEMBLIES	X		NO	Learning to realize and understand an assembly draft	1,66	6,5
	24	EXERCISES OF ASSEMBLIES		X	NO	Practising to realize and understand an assembly draft	1,66	
	25	DETAIL DRAFT	X		NO	Learning to realize a detail drawing	1,66	

WEEKLY PLANNING								
$\begin{gathered} \mathrm{w} \\ \mathrm{E} \\ \mathrm{E} \\ \mathrm{~K} \end{gathered}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{E} \\ & \mathrm{~S} \\ & \mathrm{~S} \\ & \mathrm{I} \\ & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	DESCRIPTION	TEACHING (mark X)		SPECIAL ROOM FOR SESSION (Computer class room, audio-visual class room)	WEEKLY PROGRAMMING FOR STUDENT		
			L E C T U R E S	S E M I N A R R		DESCRIPTION	CLASS HOURS $(1,66=50+50$ $\min)$	HOMEWORK HOURS (Max. Estim. 6,5h)
13	26	EXERCISES OF DETAIL DRAFTS		X	NO	Applying the theory to realice detail drawings	1,66	6,5
14	27	GEOMETRIC AND DIMENSIONAL TOLERANCES	X		NO	Learning the tolerance concept and how to calculate them	1,66	
	28	TOLERANCES APPLICATION. DESIGN ANALYSIS.		X	NO	Applying the concept and calculation of tolerances to design problems	1,66	
	29	CAD EXAM		X	YES	Exam about the used CAD program	1,66	3,25
Subtotal 1							48	88
Total 1 (Hours of class plus student homework)							136	

TOTAL (Maximun 160 horas)

