Universidad
Carlos III de Madrid
www.uc3m.es

COURSE: Calculus I

DEGREE: Bachelor in Engineering	YEAR: 1st	TERM: 1st

30 (*4, see Notes at the end) sessions along 15 weeks.

WEEKLY PLANNING									
典	$\begin{aligned} & \tilde{\sim} \\ & \text { W } \\ & 0 \\ & 2 \end{aligned}$	DESCRIPTION	GROUPS		\#1	WEEKLY PROGRAMMING FOR STUDENTS			
			LECT URES	SEMI NARS		\#2	DESCRIPTION	CLASS HOURS (*5, see Notes at the end)	HOMEWORK HOURS (Max. 7h week)
1		CHAPTER 1: Functions and Limits (*0, all chapters and section numbers refer to the book by Larson\&Edwards) - Real Numbers (App C) - Functions (P.3) - Limits (1.2, 1.3)	X				(*1, see Notes at the end)	1,66	7
		Selected exercises (*2, see Notes at the end)		X			Odd numbered exercises. Compare with solutions (*3)	1,66	
2		- Continuity (1.4) - Limits and Infinity (1.5, 3.5)	X				(*1, see Notes at the end)	1,66	7
		Selected exercises (*2, see Notes at the end)		X			Odd numbered exercises. Compare with solutions (*3)	1,66	
3		CHAPTER 2: Differentiation - \quad The derivative and the tangent line (2.1) - Basic differentiation rules $(2.2,2.3)$ - \quad The chain rule (2.4) - Implicit differentiation (2.5)	X				(*1, see Notes at the end)	1,66	7

	- Rates of change (2.2)							
	Selected exercises (*2, see Notes at the end)		X			Odd numbered exercises. Compare with solutions (*3)	1,66	
4	CHAPTER 3: Rolle's and mean-value theorems - Extrema (3.1) - Rolle's and mean-value theorems (3.2) - Consequences of Rolle's theorem (3.3, 3.4)	X				(*1, see Notes at the end)	1,66	7
	Selected exercises (*2, see Notes at the end)		X			Odd numbered exercises. Compare with solutions (*3)	1,66	
5	CHAPTER 3: Rolle's and mean-value theorems - L'Hôpital's rule (8.7) - Taylor Polynomial (9.7)	X				(*1, see Notes at the end)	1,66	7
	Selected exercises (*2, see Notes at the end)		X			Odd numbered exercises. Compare with solutions (*3)	1,66	
6	CHAPTER 4: Applications of differentiation - Curve sketching (3.6) - Optimization problems (3.7)	X				(*1, see Notes at the end)	1,66	7
	Selected exercises (*2, see Notes at the end)		X			Odd numbered exercises. Compare with solutions (*3)	1,66	
7	CHAPTER 4: Applications of differentiation - Optimization problems (3.7) - Introduction to differential equations	X				(*1, see Notes at the end)	1,66	7
	Selected exercises (*2, see Notes at the end)		X			Odd numbered exercises. Compare with solutions (*3)	1,66	
8	CHAPTER 5: Indefinite Integrals - Antiderivatives and indefinite integration (4.1) - Basic integration rules (8.1) - Integration by substitution (4.5) - Integration by parts (8.2) - Trigonometric integrals (8.3, 8.4) - Partial fractions (8.5)	X				(*1, see Notes at the end)	1,66	7
	Selected exercises (*2, see Notes at the end)		X			Odd numbered exercises. Compare with solutions (*3)	1,66	
9	CHAPTER 6: Definite Integrals - \quad Area (4.2) - Riemann sums and definite integrals (4.3) - \quad The Fundamental Theorem of Calculus (4.4) - Improper integrals (8.8)	X				(*1, see Notes at the end)	1,66	7
	Selected exercises (*2, see Notes at the end)		X			Odd numbered exercises. Compare with solutions (*3)	1,66	

Notes:
$(* 0)$ All chapters and sections numbers refer to the textbook by Larson\&Edwards "Calculus I (single variable)" ed. Cengage Learning (9th edition).
(*1) Study the corresponding sessions in Larson\&Edwards' book.
(*2) Selected exercises from Larson\&Edwards' book corresponding to the previous lecture in large group.
(*3) Do some of the odd numbered exercises Larson\&Edwards' book corresponding to the previous lecture in large group and compare with the solutions in the book.
(*4) There are 30 sessions. 15 of theory, 15 of exercises.
(*5) 1,66 hours (in fact $10 / 6$) corresponds to 100 minutes each session.
\#1 SPECIAL ROOM FOR SESSION (Computer class room, audio-visual class room)
\#2 Indicate YES/NO If the session needs 2 teachers

