

COURSE: Signal and Systems

DEGREE: Bachelor in Biomedical Engineering

WEEKLY PROGRAMMING										
WEE	SESSI	DESCRIPTION	GROUPS		SPECIAL Inidicate		WEEKLY PROGRAMMING FOR STUDENT			
к	ON		LECTU RE	SEMIN AR	- ROOM FOR SESSION (Computer class room, audio-visual class room)	YES/NO If the session needs 2 teachers: Maximum 4 sessions	DESCRIPTION	CLASS HOURS	HOMEWO RK HOURS Maximum 7 H	
1	1	 Unit 1 - Signals Presentation of the course contents Properties of the signals: regularity, symmetry 	x		No		Learn about signals as vectors and their properties.	1,66		
1	2	 Unit 1 - Signals Characterization of signals: energy and average power. RMS value. Basic operations with signals: time reversal, scaling, shifting 		x	No		Learn about the characteristics of signals.	1,66	4	
2	3	Unit 1 - Signals • Basic signals • Vectorial interpretation of signals	x		No		• Typical signals and what they are used for.	1,66	6	
2	4	Unit 1 - Signals Exercises 		х	No		Solution of the proposed exercises.	1,66		
3	5	 Unit 2- Systems Introduction Interconnection of systems: series, parallel and feedback systems Properties of the systems: causality, stability, time invariance, linearity 	x		No		 Learn about the different systems and their relation to signals. 	1,66	4	
3	6	Unit 2- Systems Linear Time-Invariant Systems (LTI) Convolution		x	No		Basic properties of systems and convolution.	1,66		
4	7	Unit 2- Systems Unit Step response Interconnection of the SLIT	x		No		Basic analysis of the response to systems.	1,66	6	

YEAR: 3rd

TERM: 1st

4	8	Unit 2- Systems				Solution of the proposed exercises.		
		• Exercises.		x	No		1,66	
5	9	Unit 3- Fourier series				Learn about Fourier series.		
-	-	Introduction: Response of LTI Systems to Complex						
		Exponentials	х		No		1,66	
		Fourier Series Representation of Continuous-Time Periodic						
		Signals: Analysis and Synthesis Equations						6
5	10	Quiz				Conditions for Fourier series.		
		Unit 3- Fourier series		x	No		1 66	
		Convergence.		~	NO		1,00	
		Properties of Continuous-Time Fourier Series. Examples.						
6	11	Unit 3- Fourier series				 Properties for Fourier series and examples. 		
		Fourier Series Representation of Discrete-Time Periodic						
		Signals: Analysis and Synthesis Equations	х		No		1,66	
		Properties of Discrete-Time Fourier Series and comparisons						4
		with the Continuous Case. Examples						
6	12	Laboratory Session 1 – Signals and Systems in the time domain.		х	Yes		1,66	
	10							
	13	Unit 4- Fourier Transform				• Learn about the Fourier transform.		
		Introduction The Continuous Time Fourier Transform for Appriadic	х		No		1,66	6
		Ine Continuous-Time Fourier Transform for Aperiodic Signals						
7	1/	Signals				Solution of the proposed exercises		
,	14	Exercises		х	No	• Solution of the proposed exercises.	1,66	
8	15	Unit A- Fourier Transform				Eourier transform for continuous periodic signals		
0	15	The Continuous-Time Fourier Transform for Periodic Signals						
		Properties of the Continuous-Time Fourier Transform	х		No		1,66	
		Examples, Parseval's Theorem						
8	16	Unit 4- Fourier Transform				Discrete-time Fourier transform		
Ũ	10	The Discrete-Time Fourier Transform for Aperiodic Signals		x	No		1.66	4
		The Discrete-Time Fourier Transform for Periodic Signals					2,00	
9	17	Unit 4- Fourier Transform				Properties of the Fourier transform.		
-		Properties of the Continuous-Time Fourier Transform	х		No		1,66	
9	18	Unit 4- Fourier Transform				Solution of the proposed exercises		6
_	_	Exercises		х	No		1,66	
10	19	Unit 5- Sampling				Introduction to Sampling and reconstruction of		
		Introduction				continuous time signals.		
		The Sampling Theorem	х		No		1,66	
		Reconstruction of Continuous-Time Signals from Its Samples						4
		Using Interpolation						
10	20	Laboratory Session 2 – Fourier Transform.	1	v	Vac	Solution of the proposed exercises.	1.66	1
				×	res		1,00	
11	21	Unit 5- Sampling				 Examples of sampling and their application. 		
		Discrete-Time Processing of Continuous-Time Signals	х		No		1,66	F
		Decimation and Interpolation						υ
11	22	Quiz		х	No	Solution of the proposed exercises.	1,66	

		Unit 5- Sampling						
		Exercises						
12	23	Unit 6- Discrete Fourier Transform				Sampled Fourier Transform.		
		Introduction	х		No		1,66	
		Sampling of the Fourier Transform						4
12	24	Laboratory Session 4 – Sampling.		х	Yes		1.66	
				~			2,00	
13	25	Unit 6- Discrete Fourier Transform				 Discrete Fourier transform and its properties. 		
		Discrete Fourier Transform	x		No	 Linear and circular convolution, differences and 	1.66	
		Properties				applications.	_,	
		Circular Convolution and Linear Convolution. Examples						6
13	26	Quiz				 Solution of the proposed exercises. 		
		Unit 6- Discrete Fourier Transform		х	No		1,66	
		Exercises	-					
14	27	Unit 7: Z-transform				Introduction to the Z-transform.		
		Introduction						
		The z-Transform	x		No		1,66	
		The Region of Convergence. Properties						
		The Inverse z-Transform	_					_
14	28	Unit 7: Z-transform				Properties and excercises.		6
		Properties of the z-Transform.						
		Evaluation of the Frequency Response from the Pole-Zero						
		Plot		х	No		1,66	
		Analysis and Characterization of LTI Systems Using the z-						
		Transform						
		Block Diagram Representation	-					_
14	29	Laboratory: Exam		X	Yes		1,66	
SUBTO	TAL						48,33 -	+ 72 =
15		Tutoviale Heredian in the			I		120,33	1
15		lutoriais, Handing in, etc						
16-		Assessment			No		3	16.66
18								10,00
TOTAL								140