Universidad
Carlos III de Madrid
www.uc3m.es

COURSE: LINEAR ALGEBRA

DEGREE: Biomedical Engineering
YEAR: 1

$\sum_{\text {而 }}^{<}$	SESSION	DESCRIPTION	GROUP		WEEKLY PROGRAMMING FOR STUDENTS		
			LECTURE	SEMINAR	NOTES	LECTURE HOURS	STUDENT WORK
1	1	1. Complex Numbers 1.1 First operations - Definition. Binomial form - Sum and product - Graphical representation 1.2 Further operations - Conjugate, modulus and argument - Division		X	Book study, Appendix A [N]	1,66	6
2	2	1.2 Exponential form - Euler's formula - Roots of a complex number	X		Book study, Appendix A [N]	1,66	6
2	3	Selected exercises		X	Odd numbered exercises. Compare with solutions (*)	1,66	
3	4	2. Sistems of linear equations 2.1 Solving linear equations - Matrix notation - Gaussian elimination 2.2 Row reduction and echelon forms - Uniqueness - Solutions of linear systems		X	Book study, chapters 1.1-1.2 [L]	1,66	6
3	5	Selected exercises		X	Odd numbered exercises. Compare with solutions (*)	1,66	
4	6	2.3 Vector equations - Vectors and linear combinations - Subset spanned by vectors 2.4 The matrix equation $A x=b$ - Matrix times vector - Solutions of a SLE	X		Book study, chapters 1.3-1.5 [L]	1,66	6
4	7	Selected exercises		X	Odd numbered exercises. Compare with solutions (*)	1,66	

5	8	3. Matrices 3.1 Matrix Operations - Sum and product by scalars - Product - Transpose of a matrix 3.2 Inverse of a matrix - Relation with the uniqueness of $A x=b$ - Computation	X		Book study, chapters 2.1-2.3 [L]	1,66	6
5	9	Midterm test on chapters 1 and 2 Selected exercises		X	Odd numbered exercises. Compare with solutions (*)	1,66	
6	10	4. Vector spaces 4.1 Vector Spaces and Subspaces - Subspaced generated by vectors - Null Sapce and Column space	X		Book study, chapters 2.8, 4.1-4.2 de [L]	1,66	
6	11	Selected exercises		X	Odd numbered exercises. Compare with solutions (*)	1,66	6
7	12	4.2 Linear Independence and bases - The spanning set theorem - Basis for $\operatorname{Nul}(\mathrm{A})$ and $\operatorname{Col}(\mathrm{A})$	X		Book study, chapters 1.7, 2.9, 4.3 [L]	1,66	
7	13	Selected exercises		X	Odd numbered exercises. Compare with solutions (*)	1,66	
8	14	4.3 Coordinate Systems 4.4 The dimension of a vector space - The basis theorem - The dimensions of $\operatorname{Nul}(\mathrm{A})$ and $\operatorname{Col}(\mathrm{A})$	X		Book study, chapters 4.4-4.5 [L]	1,66	6
8	15	Selected exercises		X	Odd numbered exercises. Compare with solutions (*)	1,66	
9	16	4.5 Rank - The Rank theorem 4.6 Change of basis			Book study, chapters 2.9, 4.6-4.7 [L]		
9	17	Selected exercises		X	Odd numbered exercises. Compare with solutions (*)	1,66	
10	18	4.7 Linear transformations - The matrix of a linear transformation - Kernel and range of a linear transformation	X		Book study, chapters 1.8-1.9 [L]	1,66	6
10	19	Selected exercises		X	Odd numbered exercises. Compare with solutions (*)	1,66	
11	20	5. Eigenvalues and eigenvectors 5.1 Definitions - Revisiting determinants - Linear Independence of eigenvectores - Eigenspaces 5.2 The characteristic equation	X		Book study, chapters 3.1 -3.2, 5.1-5.2 [L]	1,66	6
11	21	5.3 Diagonalization - The diagonalization theorem - Diagonalizating matrices Midterm test on Chapters 3 and 4	X		Book study, chapter 5-3 [L]	1,66	
11	22	Selected exercises		X	Odd numbered exercises. Compare with solutions (*)	1,66	

12	23	6. Orthogonality 6.1 Inner product, length and orthogonality 6.2 Orthogonal sets - Orthogonal and ortonormal bases - Orthogonal matrices	X		Book study, chapters 6.1-6.2 [L]	1,66	6
12	24	Selected exercises		X	Odd numbered exercises. Compare with solutions (*)	1,66	
13	25	6.3 Orthogonal projection - The best approxiamtion theorem 6.4 The Gram-Schmidt process	X		Book study, chapters 6.3-6.4 [L]	1,66	6
13	26	Selected exercises		X	Odd numbered exercises. Compare with solutions (*)	1,66	
14	27	6.5 Least squares problems - Normal equations	X		Book study, chapter 6.5 [L]	1,66	6
14	28	Selected exercises	X		Odd numbered exercises. Compare with solutions (*)	1,66	
15	29	7. Diagonalization of symmetric matrices - Th spectral theorem		X	Book study, chapter 7.1 [L]	1,66	6
15	30	Midterm test on Chapters 5 and 6				1,66	
					Subtotal 1	50	90
			Total 1 (Hours of class plus student homework hours between weeks 1-15)			140	
		Assessment, evaluation preparation. Final Test				3	7
					Subtotal 2	3	7
			Total 2 (Hours of class plus student homework hours between weeks 16-18)			10	
TOTAL (Total 1 + Total 2)							150

${ }^{(*)}$ Do some of the recomended exercises in W.K. Nicholson's ([N]) or D. C. Lay's ([L]) book corresponding to the previous lecture in large group and compare with the solutions in the book

