

DENOMINACIÓN ASIGNATURA: ELECTRONICS ENGINEERING FUNDAMENTALS		
GRADO: BACHELOR'S DEGREE IN INDUSTRIAL TECHNOLOGIES ENGINEERING	ACADEMIC YEAR: 2º (2019-2020)	TERM: 2º

The course has 29 sessions distributed during 15 weeks. The duration of each session is 100 minutes (50 + 50) with (10+10) minutes break between each session. The laboratory sessions are set in six of these sessions, specifically those addressed as SEMINARS.

	COURSE WEEKLY PLAN										
WEE	SESSION	DESCRIPTION OF THE SESSION CONTENTS	GROUP)		Indicate if it is a different	Indicate YES/NO if it is a session	STUDENT WEEKLY HOMEWORK LOAD				
×			LECTURE	SEMINAR	the classroom	with >1 teaching staff	DESCRIPTION	CLASS HOURS	HOMEWORK HOURS (Max. 7h per week)		
1	1	Introduction to the course and lab sessions. Guidelines. Topic 1. Electronic signals and systems. Electronic systems.	x				Examples of real systems and applications based on electronic systems. Top-down analysis of an electronic design. Block diagram of a generic electronic system. SPOC lab enabling certificate.	1,66	2,86		

2	2	Electronic signals. Classification. Characteristics. Review of electric circuit analysis and basic circuit theory.		x			Types of electronic signals. Parameters and characteristics. Linearity and superposition in electronic systems. Amplification in electronic systems. Amplifying the output signal provided by a sensor/transducer. SPOC lab enabling certificate.	1,66	6
2	3	Linearity and superposition. Introduction to electronic sensors, transducers and amplification.	x					1,66	
3	4	Topic 2. Electronic instrumentation. Sensors and transducers Electronic instrumentation and measurement of electronic signals.		x	LAB	NO	Implementation of basic electronic circuits and electronic equipment handling. Overview of different electronic	1,66	
3	5	Sensors and transducers. Principle of operation.	x				sensors and transducers for sensing input physical magnitudes: light, temperature, force y pressure, position, speed and sound. Preparation of Practice 1 Obtain the lab enabling certificate.	1,66	7
4	6	PRACTICE 1: Electronic sensors and transducers		x	LAB	SI	Implementation of basic electronic schemes involving some of the sensors	1,66	
4	7	Topic 3. Amplifiers and analog electronic subsystems Classification and modeling. Operation. Gain, linearity, frequency response.	x				studied. Models of analog amplifiers and their main characteristics. Small- and large-gain signal regime.	1,66	7

5	8	Software for analog circuit simulation First steps with the simulation software. Simulation of amplifying stages.		х	COMPUTER ROOM		Study through simulations of amplifier models that include load effects in real circuits.	1,66	
5	9	Operational amplifiers (opamps). Description, modeling and operation. Negative feedback topologies and applications.	x				Operational amplifiers and negative feedback topologies. Op-amp based amplifying stages in different real applications. Preparation of Practice 2	1,66	6
6	10	PRACTICE 2: AMPLIFYING STAGES WITH OPERATIONAL AMPLIFIERS		х	LAB	SI	Lab session involving operational amplifiers. Study of MOSFET transistors and their use in both analog (amplifiers) and digital (inverter logic gate) circuits. Preparation of Practice 3	1,66	
6	11	Topic 4. Electronic components and integrated circuits Electronic components. MOSFET transistor. Operation. Applications in both digital and analog electronic systems.	х					1,66	6
7	12	PRACTICE 3:TRANSISTOR-BASED ELECTRONIC CIRCUIT		х	LAB	SI	Study of a real application of MOSFET transistors on a lab electronic circuit	1,66	
7	13	Electronic components. Diode. Operation. Applications in electronic systems. Clipping circuits and Zener diode	x				Study of diode's principle of operation and their use cases.	1,66	7

8	14	Diode-based real electronic applications.		x	COMPUTER ROOM	Simulation of real diode-based electronic circuits Knowledge of the process of integrated electronics manufacturing_state-of-the	1,66	6
8	15	Integrated circuits. Manufacturing. Moore's Law. Introduction to digital electronic subsystems.	х			art technologies and future trends. Study of the need for digital electronic circuits.	1,66	
9	16	Topic 5. Digitals electronic subsystems Fundamentals of digital electronics. Numbering and coding in digital systems. Boolean algebra. Basic logic gates. Boolean logic functions and representation		х		Fundamentals of digital electronics and coding systems in the digital domain. Boolean algebra and logical functions and the way to represent them. Study of the basic logic gates.	1,66	
9	17	Combinational circuits in digital electronics. Implementation of logic functions. Sequential circuits in digital electronics: memory units.	x			Study of basic combinational circuits and their main applications. Study of basic sequential circuits and their main applications. Preparation for Partial Exam	1,66	6
10	18	Registers, memories, digital counters; relationship with modern computers and microprocessors.		х			1,66	
10	19	PARTIAL EXAM	х			Basic use of memory units.	1,66	6

	-			1				
11	20	Software for digital circuit simulation First steps with the simulation software. Schematics, chronograms, timing.		x	COMPUTER ROOM.	First steps on digital simulation software and basic digital circuits analysis. First approach to	1,66	
11	21	Interface between analog and digital electronic subsystems: data conversion. Data conversion examples. A/D and D/A converters. Characteristics.	x			combinational and sequential systems Study of the need for A/D and D/A circuits to convert signals from the analog to the digital domain and vice versa. D/A and A/D converters and their main characteristics.	1,66	6
12	22	Electronic components vendor specs. Management. Datasheet search and interpretation.		x	COMPUTER ROOM	Study of different implementations of converters and case uses. Web search of real off-the-shelf converter's datasheets and exploring its parameters.	1,66	
12	23	A/D and D/A converter implementations.	x			 Study of different implementations of converters and memory units and case uses. Preparation of Practice 4 	1,66	6
13	24	PRACTICE 4: DIGITAL ELECTRONIC SUBSYSTEMS (I)		x	LAB	Implementation of a digital electronic circuit. Measurement of digital signals and their parameters.	1,66	
13	25	Topic 6. Power systems and energy conversion. Power sources. Converters: CC/CC, inverters and rectifiers.	x			Study of different power supply approaches and their applications. Preparation of Practice 5	1,66	6
14	26	PRACTICE 5: DIGITAL ELECTRONIC SUBSYSTEMS (II)		х	LAB	Implementation of an electronic circuit with both analog and digital parts.	1,66	
14	27	Applications of energy conversion electronic systems.	x			Use cases of power sources. Preparation for lab individual exam	1,66	6

15	28	PRACTICE 6: LAB INDIVIDUAL E	XAM		x	LAB		Preparation for the ordinary exam.	1,66	3
15	29	9 Problems and exercises upon demand. Questions.		х			SI		1,66	
								Subtotal 1	48,14	86,86
					Total 1 (C	lass and worki	ing hours l	between1-14 weeks)	135	
15		Recovery lectures, ment deliverables, etc.	orship,							
16		Even proportion UDON DEC								
17		Exam preparation OPON REC	LUEST and						3	12
18										
Subtotal 2									3	12
Total 2 (Class and working hours between15-18 weeks)								15		
	TOTAL (Total 1 + Total 2. <u>180 hours max.</u>)								150	