

COURSE: Turbomachinery Design DEGREE: Aerospace Engineering YEAR: 4th TERM: 1st

La asignatura tiene 29 sesiones que se distribuyen a lo largo de 14 semanas. Los laboratorios pueden situarse en cualquiera de ellas.

Semanalmente el alumnos tendrá dos sesiones, excepto en un caso que serán tres

WEEI	WEEKLY PLANNING								
WEEK	SESSION	DESCRIPTION	GROUPS (mark X)		SPECIAL ROOM FOR SESSION (Computer	Indicate YES/NO If the session	WEEKLY PROGRAMMING FOR STUDENT		
			LECTURES	SEMINARS	class room, audio-visual class room)	needs 2 teachers	DESCRIPTION	CLASS HOURS	HOMEWORK HOURS (Max. 7h week)
1	1	Introduction and dimensional analysis 1 Introduction to the subject. Course scheduling. Definition of a turbomachine. Different kinds and applications. Main defining variables, dimensions and fluid properties. Units. Dimensional analysis: incompressible flow. Specific Speed: machine selection.	x			NO	Reading the corresponding book chapters Study and personal work	1,6	5
1	2	Dimensional analysis 2 Compressible gas flow relations. Dimensional analysis: compressible flow. Exercises on dimensional analysis		x		NO	Reading the corresponding book chapters Study and personal work Solve the proposed exercises	1,6	

		Turbomachinery Basic Equations 1							
		Fluid mechanics and thermodynamics equations in							
		integral and differential form.							
		Euler equations for turbomachines.							
		Definition of Rothalpy.							
		Turbomachinery Basic Equations 2					Deading the corresponding healt		
		Second law of thermodynamics: entropy.					shaptors		
2	3	Definition of adiabatic / polytropic efficiency.	Х	х		NO	Chapters	1,6	
		Enthalpy-entropy diagrams.					Schothe proposed eversions		
		Exercises on Turbomachinery Basic Equations					Solve the proposed exercises		
		Axial flow turbines: two-dimensional stage theory 1							5
		Dimensional analysis of a single turbine stage.					Reading the corresponding book		
2	4	Thermodynamics of a turbine stage. Total-to-total	v			NO	chapters	1.0	
2	4	stage efficiency. Row loss-stage efficiency relation.	X			NO	Study and personal work	1,6	
		Velocity triangles, loading and flow parameters,							
		reaction: Repeating stage hypothesis.							
		Axial flow turbines: two-dimensional stage theory 2					Reading the corresponding book		
3	5	Reaction. Effect on efficiency. Optimum reaction.	х		NO	NO	chapters Study and personal work	1,6	
		Smith chart. Empirical versus reversible.							
	6	Axial flow turbines: two-dimensional stage theory 3	x				Reading the corresponding book chapters Study and personal work	1,6	7
		Estimation of turbine stage performance.							7
3		Flow characteristics of a multistage turbine.				NO			
		Stresses in turbine rotor blades. Turbine blade							
		cooling. Detailed design & Design criteria							
4	-	Axial flow turbines: two-dimensional stage theory 4		v		NO	Calue the present eventions	1.0	
4	/	Exercises on axial flow turbines		×		NO	Solve the proposed exercises	1,6	
		Axial flow compressors and fans: 2D stage theory 1							
		Dimensional analysis of a single compressor stage.					Reading the corresponding book		
		Thermodynamics of a compressor stage. Total-to-					shaptors		7
4	8	total stage efficiency. Row loss-stage efficiency	Х			NO	Chapters	1,6	
		relation.					Study and personal work		
		Velocity triangles, loading and flow parameters,							
		reaction. Repeating stage hypothesis.							
		Axial flow compressors and fans: 2D stage theory 2					Reading the corresponding book		
		Loading-Flow coefficient chart. Reaction choice.	V			NO	chapters	1.0	-
5	9	Lift and Drag in terms of ϕ and ψ .	^			NU	Study and personal work	1,0	/
		Diffusion Factor and solidity selection.							

		Estimation of compressor pressure ratio and							
		efficiency.							_
		Axial flow compressors and fans: 2D stage theory 3					Reading the corresponding book		
5	10	Simplify off-design performance.	х			NO	chapters Studie and a second burgely	1,6	
		Compressor characteristic maps.					Study and personal work	-	
		Stall and surge phenomena.							
6	11	Axial flow compressors and fans: 2D stage theory 4		х		NO	Solve the proposed exercises	1,6	
		Exercises on Axial Flow Compressors							7
6	12	Lab Session 1		х	Computer	NO	Solve the proposed exercises	1,6	
					room				
		I wo-Dimensional Cascades 1							
		Introduction. Definition of streamsurface, m ² -U							
		plane, blade-to-blade analysis.				NO	Reading the corresponding book chapters	1,6	
7	13	Cascade nomenciature for compressors and turbines.	х						
		Cascade kinematics: velocity triangles. Cascade					Study and personal work		
		dynamics: forces, momentum.							
		definitions							
		Two Dimensional Cascados 2, Compressor							7
		Compressor cascade performance. Compressor							
		compressor cascade performance. compressor	x				Reading the corresponding book chapters Study and personal work	1,6	
		deflection deviation and loss							
7	14	Blade loading: surface velocity distribution diffusion				NO			
		factor							
		Compressor cascade correlations: ontimum solidity							
		polar curve. Diffusor efficiency							
		Two-Dimensional Cascades 3. Turbine							
		Turbine cascade performance. Turbine							
		characteristics: turning angle, Zweifel coefficient.					Reading the corresponding book		
8	15	Surface velocity distribution: Back Surface Diffusion	х			NO	chapters	1,6	
		parameter.					Study and personal work		7
		Turbine cascade correlations: loss, optimum pitch-							
		chord ratio							
0	16	Two-Dimensional Cascades 4		v		NO	Colve the proposed eversions	1.6	
õ	10	Exercises on Two-Dimensional Cascades		^			solve the proposed exercises	1,0	
٥	17	Lab session 2		x	Computer		Solve the proposed exercises	1.6	6
9	1/	Airfoil design and introduction to MISES		^	room		solve the proposed exercises	1,0	

9	18	Three-dimensional flow in Axial Turbomachines 1 Theory of radial equilibrium. The indirect problem: free-vortex flow, forced-vortex flow, general whirl distribution. The direct problem	x			NO	Reading the corresponding book chapters Study and personal work	1,6	
10	19	Lab Session 3 Cascade analysis with MISES		x	Computer room	NO	Solve the proposed exercises	1,6	
10	20	Three-dimensional flow in Axial Turbomachines 2 Compressible flow through a blade-row. Constant specific mass flow. Actuator disc approach. Blade-row interactions. Computer methods solving through-flow problem.	x			NO	Reading the corresponding book chapters Study and personal work	1,6	7
11	21	Three-dimensional flow in Axial Turbomachines 3 Secondary flows. Loss, angles and helicity. Three-dimensional losses. Types and models. CFD analysis. Exercises on Three-Dimensional Flow		x		NO	Reading the corresponding book chapters Study and personal work Solve the proposed exercises	1,6	
11	22	Centrifugal compressors, fans and pumps 1 Introduction, definitions and parts. Theoretical analysis of a centrifugal compressor: Inlet, impeller and diffuser equations. Optimum design of a centrifugal compressor inlet. Slip factor. Correlations.	x			NO	Reading the corresponding book chapters Study and personal work	1,6	5
12	23	Centrifugal compressors, fans and pumps 2 Performance of centrifugal compressors. Diffuser system. Vane and vane-less diffusers. Chocking in a compressor stage		x		NO	Reading the corresponding book chapters Study and personal work	1,6	5
12	24	Centrifugal compressors, fans and pumps 3 Exercises		x		NO	Solve the proposed exercises	1,6	
13	25	Radial turbines 1 Introduction. Types of inward flow radial turbine. Thermodynamics of the 90 degrees IFR turbine Basic rotor design. Rotor efficiency definition. Mach number relations. Loss coefficients.	x			NO	Reading the corresponding book chapters Study and personal work	1,6	5
13	26	Radial turbines 2 Optimum efficiency considerations. Minimum number of blades. Design considerations for rotor exit.	x			NO	Reading the corresponding book chapters Study and personal work	1,6	

		Incidence, clearance and windage losses. Pressure ratio limits.							
14	27	Exercises on radial turbines Examples of exam exercises		х		NO	Solve the proposed exercises	1,6	6
14	28	Presentation of blade design		х		SI	Report lab activities	1,6	
	29	Lab session 3 Experimental calculation of a compressor map		x	LAB 7.0.H.06	NO	Solve the proposed exercises	1,6	2
							Subtotal 1	48.3	88
Total 1 (Hours of class plus student homework hours between weeks 1-14)								136.3	

15		Tutorials, handing in, etc							5
16									
17		Assessment						3	15
18									
Subtotal 2							3	20	
Total 2 (Hours of class plus student homework hours between weeks 15-18)							23		

TOTAL (Total 1 + Total 2. <u>Maximum 180 hours</u>) 159.3	OTAL (Total 1 + Total 2. <u>Maximum 180 hours</u>)		159.3
--	---	--	-------