WEEKLY PLANNING								
$\sum_{n}^{n}$$\cdots$$\pi$	$\begin{aligned} & \boldsymbol{0} \\ & \text { ח } \\ & \text { O } \\ & \mathbf{O} \\ & \mathbf{Z} \end{aligned}$	DESCRIPTION	GROUP (mark X)		SPECIAL ROOM FOR SESSION (Computer Classroom, audiovisual classroom)	WEEKLY PROGRAMMING FOR STUDENT		
			LECTURE	SEMINAR		DESCRIPTION	CLASS HOURS	HOMEWO RK HOURS (Max. 7h per week)
1	1	Theory. Unit 1. Matrices	X			Review of definitions and concepts related to matrices. Matrix operations. Transpose of a matrix. Inverse of a matrix. Determinant. Sets induced by a matrix.	1,66	5.68
1	2	Exercises. Unit 1		X		Exercises. Unit 1	1,66	
2	3	Theory. Unit 2. Systems of Linear Equations.	X			Geometric interpretation of linear systems in R^{n}. Direct methods for solving linear systems. Existence and unicity of solutions. Matrix methods.	1,66	5.68
2	4	Exercises. Unit 2		X		Exercises. Unit 2	1,66	
3	5	Theory. Unit 3. Vector Spaces	X			Vector spaces. Linear dependence. Vector subspaces. Operations between vectors subspaces.	1,66	5.68
3	6	Exercises. Unit 3		X		Exercises. Unit 3	1,66	
4	7	Theory. Unit 4: Basis and dimension	X			Spanning sets. Basis. Dimension. Coordinates.	1,66	5.68
4	8	Exercises. Unit 4		X		Exercises. Unit 4	1,66	
5	9	Theory. Unit 5: Linear transformations	X			Definition and properties. Operations between linear transformations.	1,66	5.68
5	10	Exercises. Unit 5		X		Exercises. Unit 5	1,66	
6	11	Theory. Unit 6: Linear transformations and Matrices	X			Representation of linear transformations using matrices.	1,66	5.68
6	12	Exercises. Unit 6		X		Exercises. Unit 6	1,66	

7	13	Theory. Unit 7: Change of basis	X		Change of basis. Normal form of a linear transformation.	1,66	5.68
7	14	Exercises. Unit 7		X	Exercises. Unit 7	1,66	
8	15	Theory. Unit 8: Eigenvalues and eigenvectos	X		Definitions. The characteristic polynomial and the characteristic equation. Diagonalization.	1,66	5.68
8	16	Exercises. Unit 8		X	Exercises. Unit 8	1,66	
9	17	Theory. Unit 9: Inner product. Orthogonality	X		Inner product. Length and angles. Orthogonal projection. Orthogonal complement.	1,66	6.02
9	18	Exercises. Unit 9		X	Exercises. Unit 9	1,66	
10	19	Theory. Unit 10: Orthogonal bases	X		Orthogonal sets and bases. Gram-Schmidt process. QR factorization.	1,66	
10	20	Exercises. Unit 10		X	Exercises. Unit 10	1,66	5.68
10	21	Assessment test	X		Assessment test (units 1-8)	1,66	
11	22	Theory. Unit 11: The spectral theorem	X		Diagonalization of symmetric matrices. Spectral decomposition.	1,66	5.68
11	23	Exercises. Unit 11		X	Exercises. Unit 11	1,66	
12	24	Theory. Unit 12: Geometry of linear transformations	X		Reflections. Contractions and Dilations. Rotations. Projections.	1,66	5.68
12	25	Exercises. Unit 12		X	Exercises. Unit 12	1,66	
13	26	Theory. Unit 13: Least squares	X		The least squares problema. Geometric interpretation. Approximation of functions.	1,66	5.68
13	27	Exercises. Unit 13		X	Exercises. Unit 13	1,66	
14	28	Theory. Unit 14: Pseudoinverse and singular value decomposition	X		Pseudoinverse. Singular value decomposition	1,66	5.68
14	29	Exercises. Unit 14		X	Exercises. Unit 14	1,66	
					Subtotal 1	48.14	79.86
			Total 1 (Hours of class plus student homework hours between weeks 1-14)			128	

