

DENOMINACIÓN ASIGNATURA: ELECTRONICS ENGINEERING FUNDAMENTALS		
GRADO: BACHELOR IN INDUSTRIAL ELECTRONICS AND AUTOMATION ENGINEERING ACA	CADEMIC YEAR: 2º (2019-2020)	TERM: 2º

The course has 29 sessions distributed during 15 weeks. The duration of each session is 100 minutes (50 + 50) with (10+10) minutes break between each session. The laboratory sessions are set in six of these sessions, specifically those addressed as SEMINARS.

	COURSE WEEKLY PLAN												
WEEK	SESSION	DESCRIPTION OF THE SESSION CONTENTS	GR	OUP)	Indicate if it is a different location from	Indicate YES/NO if it is a session	if						
*	DN		LECTURE	SEMINAR	the classroom	with >1 teaching staff	DESCRIPTION	CLASS HOURS	HOMEWORK HOURS (Max. 7h per week) 2,86				
1	1	Introduction to the course and lab sessions. Guidelines. Topic 1. Electronic signals and systems. Electronic systems.	х				Examples of real systems and applications based on electronic systems. Top-down analysis of an electronic desing. Block diagram of a generic electronic system. SPOC lab enabling certificate.	1,66	2,86				

2	2	Electronic signals. Classification. Characteristics. Review of electric circuit analysis and basic circuit theory.		x			Types of electronic signals. Parameters and characteristics. Linearity and superposition in	1,66	
2	3	Linearity and superposition. Introduction to electronic sensors, transducers and amplification.	x				electronic systems. Amplification in electronic systems. Amplifying the output signal provided by a sensor/transducer.	1,66	6
3	4	Topic 2. Electronic instrumentation. Sensors and transducers Electronic instrumentation and measurement of electronic signals.		x	LAB	NO	SPOC lab enabling certificate. Implementation of basic electronic circuits and electronic equipment handling. Overview of different electronic	1,66	
3	5	Sensors and transducers. Principle of operation.	x				Sensors and transducers for sensing input physical magnitudes: light, temperature, force y pressure, position, speed y sound. Preparation of Practice 1 Obtain the lab enabling certificate.	1,66	7
4	6	PRACTICE 1: Electronic sensors and transducers		x	LAB	SI	Implementation of basic electronic schemes involving some of the sensors studied.	1,66	
4	7	Topic 3. Amplifiers and analog electronic subsystems Classification and modeling. Operation. Gain, linearity, frequency response.	x				Models of analog amplifiers and their main characteristics. Small- and large-gain signal regime.	1,66	7
5	8	Software for analog circuit simulation First steps with the simulation software. Simulation of amplifying stages.		x	COMPUTER ROOM		Study through simulations of amplifier models that include load effects in real circuits.	1,66	6

5	9	Operational amplifiers (opamps). Description, modeling and operation. Negative feedback topologies and applications.	x				Operational amplifiers and negative feedback topologies. Op-amp based amplifying stages in different real applications. Preparation of Practice 2	1,66	
6	10	PRACTICE 2: AMPLIFYING STAGES WITH OPERATIONAL AMPLIFIERS		x	LAB	SI	Lab session involving operational amplifiers.	1,66	
6	11	Topic 4. Electronic components and integrated circuits Electronic components. MOSFET transistor. Operation. Applications in both digital and analog electronic systems.	х				Study of MOSFET transistors and their use in both analog (amplifiers) and digital (inverter logic gate) circuits. Preparation of Practice 3	1,66	6
7	12	PRACTICE 3:TRANSISTOR-BASED ELECTRONIC CIRCUIT		x	LAB	SI	Study of a real application of MOSFET transistors on a lab electronic circuit	1,66	
7	13	Electronic components. Diode. Operation. Applications in electronic systems. Clipping circuits and Zener diode	х				implementation. Study of diode's principle of operation and their use cases.	1,66	7
8	14	Diode-based real electronic applications.		x	COMPUTER ROOM		Simulation of real diode-based electronic circuits Knowledge of the process of integrated electronics manufacturing, state-of-the	1,66	6
8	15	Integrated circuits. Manufacturing. Moore's Law. Introduction to digital electronic subsystems.	x				art technologies and future trends. Study of the need for digital electronic circuits.	1,66	0

9	16	Topic 5. Digitals electronic subsystems Fundamentals of digital electronics. Numbering and coding in digital systems. Boolean algebra. Basic logic gates. Boolean logic functions and representation		x		Fundamentals of digital electronics and coding systems in the digital domain. 1,66 Boolean algebra and logical functions and the way to represent them. Study	
9	17	Combinational circuits in digital electronics. Implementation of logic functions. Sequential circuits in digital electronics: memory units.	x			of the basic logic gates. Study of basic combinational circuits and their main applications. Study of basic sequential circuits and their main applications. Preparation for Partial Exam	6
10	18	Registers, memories, digital counters; relationship with modern computers and microprocessors.		x		1,66 Basic use of memory units.	6
10	19	PARTIAL EXAM	x			1,66	C C
11	20	Software for digital circuit simulation First steps with the simulation software. Schematics, chronograms, timing.		x	COMPUTER ROOM.	First steps on digital simulation software and basic digital circuits analysis. First approach to combinational and sequential systems1,66	
11	21	Interface between analog and digital electronic subsystems: data conversion. Data conversion examples. A/D and D/A converters. Characteristics.	x			Study of the need for A/D and D/A circuits to convert signals from the analog to the digital domain and vice versa. D/A and A/D converters and their main characteristics.	6
12	22	Electronic components vendor specs. Management. Datasheet search and interpretation.		x	COMPUTER ROOM	Study of different implementations of converters and case uses. Web search of real off-the-shelf converter's1,66datasheets and exploring its parameters.1,66	6

12	23	A/D and D/A converter implem	entations.	Х				Study of different implementations of converters and memory units and case uses. Preparation of Practice 4	1,66	
13	24	PRACTICE 4: DIGITAL ELECTROI SUBSYSTEMS (I)	VIC		х	LAB		Implementation of a digital electronic circuit. Measurement of digital signals and their parameters.	1,66	
13	25	Topic 6. Power systems and conversion. Power sources. Converters: CC/CC, inverters an		х				Study of different power supply approaches and their applications. Preparation of Practice 5	1,66	6
14	26	PRACTICE 5: DIGITAL ELECTROI SUBSYSTEMS (II)	VIC		х	LAB		Implementation of an electronic circuit with both analog and digital parts.	1,66	
14	27	, Applications of energy conversion electronic systems.		х				Use cases of power sources. Preparation for lab individual exam	1,66	6
15	28	PRACTICE 6: LAB INDIVIDUAL EXAM			x	LAB		Preparation for the ordinary exam.	1,66	3
15	29	Problems and exercises upon d Questions.	emand.	Х			SI		1,66	
								Subtotal 1	48,14	86,86
r - 1		Γ			Total 1 (Cl	ass and work	king hours	between1-14 weeks)	135	
15		Recovery lectures, mento deliverables, etc.	orship,							
16		Exam preparation UPON REC)UEST and							
17 18		Evaluation							3	12
Subtotal 2										12
Total 2 (Class and working hours between15-18 weeks)										•
	TOTAL (Total 1 + Total 2. <u>180 hours max.</u>)								150)