Universidad
Carlos III de Madrid
www.uc3m.es

COURSE: CALCULUS I

DEGREE: Bachelor of Industrial Electronics and Automation/Mechanical Engineering							YEAR: 2015/2016	TERM: Fall	
WEEKLY PLANNING									
$\sum_{\substack{\mathrm{m}}}^{\substack{x}}$		DESCRIPTION	GROUPS (mark X)		SPECIAL ROOM FOR SESSION (Computer class room, audio-visual class room)	Indicate YES/NO If the session needs 2 teachers	WEEKLY PROGRAMMING FOR STUDENT		
			LECTURES	SEMINARS			DESCRIPTION	CLASS HOURS	HOMEWORK HOURS (Max. 7h week)
1	1	The real line, intervals, inequalities, absolute value, sets in the real line and in the plane, mathematical induction.	X			NO	Review of notions studied in previous years. Study the contents explained in the lectures from the main references. Solve problems described in the lectures.	1,6	
1	2	Solve exercises related to the contents in session 1.		X		NO	Solve exercises in the homework sheet related to the session.	1,6	4
2	3	Sequences of numbers, main notions, limits of sequences, recurrent sequences. Stirling formula and Stoltz test.	X			NO	Study the contents explained in the lectures from the main references. Solve problems described in the lectures.	1,6	
2	4	Solve exercises related to the contents in session 3.		X		NO	Solve exercises in the homework sheet related to the session.	1,6	6
3	5	Series of numbers, main notions. Tests for convergence for series of positive numbers, absolute and conditional convergence. Leibniz's test.	X			NO	Study the contents explained in the lectures from the main references. Solve problems described in the lectures.	1,6	
3	6	Elementary functions, composition of functions, inverse function. Polar coordinates and sketch of graphs of functions.	X			NO	Study the contents explained in the lectures from the main references. Solve problems described in the lectures.	1,6	7
3	7	Solve exercises related to the contents in session 5.		X		NO	Solve exercises in the homework sheet related to the session.	1,6	

4	8	Limits of functions, definition, main theorems. Evaluation of limits.	X		NO	Study the contents explained in the lectures from the main references. Solve problems described in the lectures.	1,6	7
4	9	Solve exercises related to the contents in session 6.		X	NO	Solve exercises in the homework sheet related to the session.	1,6	
5	10	Continuous functions, properties and main theorems.	X		NO	Study the contents explained in the lectures from the main references. Solve problems described in the lectures.	1,6	5
5	11	Solve exercises related to the contents in session 8.		X	NO	Solve exercises in the homework sheet related to the session.	1,6	
6	12	Differentiation of functions: definition, differentiation rules, interpretation. Bernoulli-L'Hôpital rule.	X		NO	Study the contents explained in the lectures from the main references. Solve problems described in the lectures.	1,6	7
6	13	Solve exercises related to the contents in session 10.		X	NO	Solve exercises in the homework sheet related to the session.	1,6	
7	14	Main theorems on differentiation. Extrema of functions. Optimization problems with constraints.	X		NO	Study the contents explained in the lectures from the main references. Solve problems described in the lectures.	1,6	7
7	15	Solve exercises related to the contents in session 12.		X	NO	Solve exercises in the homework sheet related to the session.	1,6	
8	16	Convexity and asymptotes. Graph of functions.	X		NO	Study the contents explained in the lectures from the main references. Solve problems described in the lectures.	1,6	5
8	17	Solve exercises related to the contents in session 14. QUIZ 1.		X	NO	Solve exercises in the homework sheet related to the session.	1,6	
9	18	Taylor polynomial and series: definition, main theorems. Evalution of limits with Taylor polynomial. Convergence domain for a Taylor series.	X		NO	Study the contents explained in the lectures from the main references. Solve problems described in the lectures.	1,6	6
9	19	Solve exercises related to the contents in session 16.		X	NO	Solve exercises in the homework sheet related to the session.	1,6	
10	20	Antiderivatives, integration rules, integration by parts and by decomposition in simple fractions.	X		NO	Study the contents explained in the lectures from the main references. Solve problems described in the lectures.	1,6	7
10	21	Solve exercises related to the contents in session 18.		X	NO	Solve exercises in the homework sheet related to the session.	1,6	
11	22	Integration by substitution and other methods to evaluate integrals.	X		NO	Study the contents explained in the lectures from the main references. Solve problems described in the lectures.	1,6	7

