COURSE: Cálculus I

| DEGREE: Electric Engineering | YEAR: 10 |
| :--- | :--- | :--- | :--- |

WEEKLY PLANNING							
$\sum_{\text {歂 }}$		description	GROUP		WEEKLY PROGRAMMING FOR STUDENTS		
			L	s	DESCRIPTION	$\begin{aligned} & \text { CLASS } \\ & \text { HOURS } \end{aligned}$	HOMEWORK HOURS
1	1	1. Functions 1.1 Numbers, functions and their graphs - Real numbers - Functions - Graphs		X	Study chapter P, [LE] (*1)	$\begin{gathered} 1,66 \\ (100 \mathrm{~m} \\ \text { in) } \end{gathered}$	7
1	2	1.2 Limits and their properties - Evaluating limits analytically - Infinite limits - Limits at infinity	X		Study sections 1.1-1.3, 1.5 y 3.5, [LE]	1,66	
2	3	Selected excercises (*2)		X	Odd numbered exercises. Compare with solutions (*3)	1,66	
2	4	1.3 Continuous functions - Continuity and one-side limits - The Intermediate Value Theorem		X	Study section 1.4, [LE] (*1)	1,66	7
3	5	Selected excercises (*2) TEST 1		X	Odd numbered exercises. Compare with solutions (*3)	1,66	
3	6	2. Differentiation 2.1 Definition and basic differentiation rules - The derivative and tangent line - Basic differentiation rules - Product and quotient rules and higher-order derivatives	X		Study sections 2.1-2.3, [LE] (*1)	1,66	7

4	7	Selected excercises (*2)		X	Odd numbered exercises. Compare with solutions (*3)	1,66	
4	8	- The Chain rule - Implicit differentiation 2.2 Applications - Extrema on an interval - Rolle's and mean-value theorems	X		Study sections 2.4-2.5 y 3.1-3.2, [LE] (*1)	1,66	7
5	9	Selected excercises (*2) TEST 2		X	Odd numbered exercises. Compare with solutions (*3)	1,66	
5	10	- Increasing and decreasing functions - Concavity - Curve sketching 2.3 Optimization problems	X		Study sections 3.3 y 3.7, [LE] (*1)	1,66	7
6	11	Selected excercises (*2)		X	Odd numbered exercises. Compare with solutions (*3)	1,66	
6	12	2.4 Taylor polynomials - Taylor polynomials - Indeterminate forms and L'Hôpital's rule	X		Study sections 9.7 y 8.7, [LE] (*1)	1,66	7
7	13	Test on chapters 1 and 2		X	Odd numbered exercises. Compare with solutions (*3)	1,66	
7	14	3. Integration 3.1. Primitives - Antiderivatives and indefinite integration - Area and definite integrals - The Fundamental Theorem of Calculus	X		Study sections 4.1-4.4, [LE] (*1)	1,66	7
8	15	Selected excercises (*2)		X	Odd numbered exercises. Compare with solutions (*3)	1,66	
8	16	3.2. Integration techniques - Basic integration rules - Integration by substitution - Integration by parts	X		Study sections 4.5 y 8.1-8.2 [LE] (*1)	1,66	7
9	17	Selected excercises (*2) TEST 3		X	Odd numbered exercises. Compare with solutions (*3)	1,66	
9	18	- Partial fractions - Improper integrals	X		Study sections 8.5 y 8.8, [LE] (*1)	1,66	7

10	19	Selected excercises (*2)		X	Odd numbered exercises. Compare with solutions (*3)	1,66	
10	20	3.3. Applications - Area of a region between two curves - Volume	X		Study sections 7.1-7.3, [LE] (*1)	1,66	7
10	21	- Arc length and surfaces of revolution - Centers of mass, fluide pressure	X		Study sections 7.4-7.7, [LE] (*1)	1,66	
11	22	Selected excercises (*2) TEST 4		X	Odd numbered exercises. Compare with solutions (*3)	1,66	
11	23	4. Infinite series 4.1 Sequences	X		Study sections 9.1, [LE] (*1)	1,66	7
12	24	Selected excercises (*2)		X	Odd numbered exercises. Compare with solutions (*3)	1,66	
12	25	4.2 Series - Real number series and convergence - Alternating series - Convergence criteria	X		Study sections 9.2-9.6, [LE] (*1)	1,66	7
13	26	Selected excercises (*2) TEST 5		X	Odd numbered exercises. Compare with solutions (*3)	1,66	
13	27	4.3 Power series - Representation of functions by power series - Convergence radius	X		Study sections 9.8-9.9.9, [LE] (*1)	1,66	7
14	28	Selected excercises (*2)		X	Odd numbered exercises. Compare with solutions (*3)	1,66	7
14	29	- Taylor series	X		Study sections 9.10, [LE] (*1)	1,66	
					Subtotal 1	48,33	98
Total 1 (Hours of class plus student homework hours between weeks 1-14)						146,33	

Notes:

(*1) Study the corresponding sessions in Larson\&Edwards' book.
(*2) Selected exercises from Larson\&Edwards' book corresponding to the previous lecture in large group.
(*3) Do some of the odd numbered exercises Larson\&Edwards' book corresponding to the previous lecture in large group and compare with the solutions in the book.

