

COURSE: Advanced concepts in Fluid Mechanics

DEGREE: Bachelor in Mechanical Engineering

YEAR: 4

TERM:

	PLANN								
WEEK	SESSIO N	DESCRIPTION	GROUPS		SPECIAL ROOM FOR SESSION (Computer class room, audio-visual class room)	Inidicate YES/NO If the session needs 2 teachers: Maximum 4 sessions	WEEKLY PROGRAMMING FOR STUDENT		
			LECTU RE	SEMIN AR			DESCRIPTION	CLASS HOURS	HOMEWORK HOURS Maximum 7 H
1	1	FLOW KINEMATICS. Material derivative. Acceleration. Circulation and vorticity. Irrotational flow and velocity potential. Relative motion near a point. Rate-of-strain tensor. Deformation of square and cubic elements.	x			NO		1,5	4
2	2	Solution to a kinematics problem.	Х			NO		1,5	
3	3	CONSERVATION EQUATIONS IN DIFFERENTIAL FORM . Mass conservation equation in differential form. Stream function. Stress tensor. Navier-Poisson law. Momentum equation in differential form.	x			NO		1,5	4
4	4	Perfect liquids: modified pressure and Bernoulli's equation. Example.	х			NO		1,5	
5	5	Conduction heat transfer. Fourier's law. Prandtl number. Energy equation in differential form. Kinetic and Internal energy equations. Enthalpy and entropy equations.	x			NO		1,5	5
6	6	Navier-Stokes equations. Initial and boundary conditions. Solution to problems in planar, cylindrical and spherical coordinates.	x			NO		1,5	
7	7	UNIDIRECTIONAL FLOW. Basic equations, initial and boundary conditions. Steady case: Couette, Hagen- Poiseuille and Poiseuille flows.	x			NO		1,5	4
8	8	Quasi-steady and transient flows. Rayleigh and Stokes problems.	х			NO		1,5	

9	9	HYDRODYNAMIC LUBRICATION. Introduction.	Х		NO		1,5	5
		Bidimensional case: order-of-magnitude analysis. The						
		lubrication effect. Reynolds equation.						
10	10	Solution of hydrodynamic lubrication problems.	Х		SI		1,5	
11	11	IDEAL FLOW THEORY . Flow at large Reynolds numbers.	Х		NO		1,5	5
		Euler equations. Initial and boundary conditions. Potential						
		flow. Frictionless flow in ducts.						
12	12	BOUNDARY-LAYER THEORY. Introduction. Main features	Х		NO		1,5	
		of the boundary layer. Equations and boundary conditions.						
13	13	Skin friction. Boundary-layer thickness. Boundary-layer	Х		NO		1,5	5
		separation. Blasius' solution.						
14	14	Von Kármán integral boundary-layer equation. Von	Х		NO		1,5	
		Karmán-Pohlhausen technique. Examples.						
SUBTOTAL					21 + 24 = 45			
15		Tutorials, Handing in, etc			NO		2	2
16-18		Assessment			NO		3	18
TOTAL							70	

LABOR		CLASSES PROGRAMMING*				
SESSI ON	WEEK	DESCRIPTION	LABORATORY	WEEKLY PROGRAMMING FOR STUDENT		
				DESCRIPTION	CLASS HOURS	HOMEWORK HOURS Maximum 7 H
1	7	Use of Matlab to analyse the pulsating flow in a pipe (I)	Computer room	 Careful reading of session description prior to entering the lab. Numerical session in the lab. Analysis of data 	1,5	3,5
2	8	Use of Matlab to analyse the pulsating flow in a pipe (II)	Computer room	- Numerical session in the lab. - Analysis of data - Report writing	1,5	3,5
3	12	Use of Matlab to solve and analyse Blasius' boundary layer (I).	Computer room	- Careful reading of session description prior to entering the lab. - Numerical session in the lab. - Analysis of data	1,5	3,5
4	13	Use of Matlab to solve and analyse Blasius' boundary layer (II).	Computer room	 Numerical session in the lab. Analysis of data Report writing 	1,5	3,5
TOTAL	15					

* 6 hours of complementary laboratories classes in EPS