

| DENOMINACIÓN ASIGNATURA: ELECTRONICS ENGINEERING FUNDAMENTALS |                               |          |
|---------------------------------------------------------------|-------------------------------|----------|
| GRADO: BACHELOR IN MECHANICAL ENGINEERING                     | ACADEMIC YEAR: 2º (2018-2019) | TERM: 2º |

The course has 29 sessions distributed during 15 weeks. The duration of each session is 100 minutes (50 + 50) with (10+10) minutes break between each session. The laboratory sessions are set in six of these sessions, specifically those addressed as SEMINARS.

|      | COURSE WEEKLY PLAN |                                                                                                                                |             |         |                                                   |                              |                                                                                                                                                                                                                  |                                      |      |  |  |  |
|------|--------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------|---------|---------------------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------|--|--|--|
| WEEK | SESSION            | DESCRIPTION OF THE SESSION CONTENTS                                                                                            | GR          | OUP)    | Indicate if it is<br>a different<br>location from | it is a session              |                                                                                                                                                                                                                  | ORK LOAD                             |      |  |  |  |
|      | 9N                 |                                                                                                                                | LECTUR<br>E | SEMINAR | the classroom                                     | with >1<br>teaching<br>staff | DESCRIPTION                                                                                                                                                                                                      | CLASS HOURS<br>(Max. 7h per<br>week) |      |  |  |  |
| 1    | 1                  | Introduction to the course and lab<br>sessions. Guidelines.<br>Topic 1. Electronic signals and systems.<br>Electronic systems. | х           |         |                                                   |                              | Examples of real systems and<br>applications based on electronic<br>systems.<br>Top-down analysis of an electronic<br>desing. Block diagram of a generic<br>electronic system.<br>SPOC lab enabling certificate. | 1,66                                 | 2,86 |  |  |  |

| 2 | 2 | Electronic signals. Classification.<br>Characteristics. Review of electric circuit<br>analysis and basic circuit theory.                                 |   | х |                   |    | Types of electronic signals. Parameters<br>and characteristics.<br>Linearity and superposition in                                                                                                           | 1,66 |   |
|---|---|----------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|-------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---|
| 2 | 3 | Linearity and superposition.<br>Introduction to electronic sensors,<br>transducers and amplification.                                                    | x |   |                   |    | electronic systems.<br>Amplification in electronic systems.<br>Amplifying the output signal provided<br>by a sensor/transducer.<br>SPOC lab enabling certificate.                                           | 1,66 | 6 |
| 3 | 4 | <b>Topic 2. Electronic instrumentation.</b><br><b>Sensors and transducers</b><br>Electronic instrumentation and<br>measurement of electronic signals.    |   | х | LAB               | NO | Implementation of basic electronic<br>circuits and electronic equipment<br>handling.<br>Overview of different electronic                                                                                    | 1,66 |   |
| 3 | 5 | Sensors and transducers. Principle of operation.                                                                                                         | x |   |                   |    | sensors and transducers for sensing<br>input physical magnitudes: light,<br>temperature, force y pressure,<br>position, speed y sound.<br>Preparation of Practice 1<br>Obtain the lab enabling certificate. | 1,66 | 7 |
| 4 | 6 | PRACTICE 1: Electronic sensors and transducers                                                                                                           |   | x | LAB               | SI | Implementation of basic electronic schemes involving some of the sensors studied.                                                                                                                           | 1,66 |   |
| 4 | 7 | <b>Topic 3. Amplifiers and analog</b><br><b>electronic subsystems</b><br>Classification and modeling. Operation.<br>Gain, linearity, frequency response. | x |   |                   |    | Models of analog amplifiers and their<br>main characteristics.<br>Small- and large-gain signal regime.                                                                                                      | 1,66 | 7 |
| 5 | 8 | <b>Software for analog circuit simulation</b><br>First steps with the simulation software.<br>Simulation of amplifying stages.                           |   | х | COMPUTE<br>R ROOM |    | Study through simulations of amplifier models that include load effects in real circuits.                                                                                                                   | 1,66 | 6 |

| 5 | 9  | <b>Operational amplifiers (opamps).</b><br>Description, modeling and operation.<br>Negative feedback topologies and<br>applications.                                                   | х |   |                   |    | Operational amplifiers and negative<br>feedback topologies.<br>Op-amp based amplifying stages in<br>different real applications.<br><b>Preparation of Practice 2</b> | 1,66 |   |
|---|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|-------------------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---|
| 6 | 10 | PRACTICE 2: AMPLIFYING STAGES WITH<br>OPERATIONAL AMPLIFIERS                                                                                                                           |   | х | LAB               | SI | Lab session involving operational amplifiers.                                                                                                                        | 1,66 |   |
| 6 | 11 | Topic 4. Electronic components and<br>integrated circuits<br>Electronic components.<br>MOSFET transistor.<br>Operation. Applications in both digital and<br>analog electronic systems. | х |   |                   |    | Study of MOSFET transistors and their<br>use in both analog (amplifiers) and<br>digital (inverter logic gate) circuits.<br>Preparation of Practice 3                 | 1,66 | 6 |
| 7 | 12 | PRACTICE 3:TRANSISTOR-BASED<br>ELECTRONIC CIRCUIT                                                                                                                                      |   | Х | LAB               | SI | Study of a real application of MOSFET<br>transistors on a lab electronic circuit                                                                                     | 1,66 |   |
| 7 | 13 | <b>Electronic components.</b><br>Diode.<br>Operation. Applications in electronic<br>systems. Clipping circuits and Zener diode                                                         | х |   |                   |    | implementation.<br>Study of diode's principle of operation<br>and their use cases.                                                                                   | 1,66 | 7 |
| 8 | 14 | Diode-based real electronic applications.                                                                                                                                              |   | х | COMPUTE<br>R ROOM |    | Simulation of real diode-based<br>electronic circuits<br>Knowledge of the process of integrated<br>electronics manufacturing, state-of-the                           | 1,66 | 6 |
| 8 | 15 | Integrated circuits.<br>Manufacturing. Moore's Law.<br>Introduction to digital electronic<br>subsystems.                                                                               | х |   |                   |    | art technologies and future trends.<br>Study of the need for digital electronic<br>circuits.                                                                         | 1,66 | 5 |

| 9  | 16 | <b>Topic 5. Digitals electronic subsystems</b><br>Fundamentals of digital electronics.<br>Numbering and coding in digital systems.<br>Boolean algebra. Basic logic gates. Boolean<br>logic functions and representation |   | x |                    | Fundamentals of digital electronics and<br>coding systems in the digital domain.<br>Boolean algebra and logical functions<br>and the way to represent them. Study                                               | 1,66 |   |
|----|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---|
| 9  | 17 | Combinational circuits in digital electronics.<br>Implementation of logic functions.<br>Sequential circuits in digital electronics:<br>memory units.                                                                    | x |   |                    | of the basic logic gates.<br>Study of basic combinational circuits<br>and their main applications.<br>Study of basic sequential circuits and<br>their main applications.<br><b>Preparation for Partial Exam</b> | 1,66 | 6 |
| 10 | 18 | Registers, memories, digital counters;<br>relationship with modern computers and<br>microprocessors.                                                                                                                    |   | x |                    | Basic use of memory units.                                                                                                                                                                                      | 1,66 | 6 |
| 10 | 19 | PARTIAL EXAM                                                                                                                                                                                                            | x |   |                    |                                                                                                                                                                                                                 | 1,66 |   |
| 11 | 20 | <b>Software for digital circuit simulation</b><br>First steps with the simulation software.<br>Schematics, chronograms, timing.                                                                                         |   | x | COMPUTE<br>R ROOM. | First steps on digital simulation<br>software and basic digital circuits<br>analysis. First approach to<br>combinational and sequential systems                                                                 | 1,66 |   |
| 11 | 21 | Interface between analog and digital<br>electronic subsystems: data conversion.<br>Data conversion examples.<br>A/D and D/A converters. Characteristics.                                                                | x |   |                    | Study of the need for A/D and D/A<br>circuits to convert signals from the<br>analog to the digital domain and vice<br>versa. D/A and A/D converters and<br>their main characteristics.                          | 1,66 | 6 |
| 12 | 22 | Electronic components vendor specs.<br>Management. Datasheet search and<br>interpretation.                                                                                                                              |   | x | COMPUTE<br>R ROOM  | Study of different implementations of<br>converters and case uses. Web search<br>of real off-the-shelf converter's<br>datasheets and exploring its<br>parameters.                                               | 1,66 | 6 |

| 12                                                          | 23 | A/D and D/A converter implementation                                                                                    | s. X |            |               |            | Study of different implementations of<br>converters and memory units and case<br>uses.<br><b>Preparation of Practice 4</b> | 1,66  |          |
|-------------------------------------------------------------|----|-------------------------------------------------------------------------------------------------------------------------|------|------------|---------------|------------|----------------------------------------------------------------------------------------------------------------------------|-------|----------|
| 13                                                          | 24 | PRACTICE 4: DIGITAL ELECTRONIC<br>SUBSYSTEMS (I)                                                                        |      | х          | LAB           |            | Implementation of a digital electronic<br>circuit. Measurement of digital signals<br>and their parameters.                 | 1,66  |          |
| 13                                                          | 25 | <b>Topic 6. Power systems and energy</b><br><b>conversion.</b><br>Power sources.<br>Converters: DC/DC, DC/AC and AC/DC. | x    |            |               |            | Study of different power supply<br>approaches and their applications.<br><b>Preparation of Practice 5</b>                  | 1,66  | 6        |
| 14                                                          | 26 | PRACTICE 5: DIGITAL ELECTRONIC<br>SUBSYSTEMS (II)                                                                       |      | х          | LAB           |            | Implementation of an electronic circuit with both analog and digital parts.                                                | 1,66  |          |
| 14                                                          | 27 | Applications of energy conversion electronic systems.                                                                   | x    |            |               |            | Use cases of power sources.<br>Preparation for lab individual exam                                                         | 1,66  | 6        |
| 15                                                          | 28 | PRACTICE 6: LAB INDIVIDUAL EXAM                                                                                         |      | х          | LAB           |            | Preparation for the ordinary exam.                                                                                         | 1,66  | 3        |
| 15                                                          | 29 | Problems and exercises upon demand.<br>Questions.                                                                       | х    |            |               | SI         |                                                                                                                            | 1,66  |          |
|                                                             |    |                                                                                                                         |      |            |               |            | Subtotal 1                                                                                                                 | 48,14 | 86,86    |
|                                                             | -  |                                                                                                                         |      | Total 1 (C | lass and worl | king hours | between1-14 weeks)                                                                                                         | 135   | <b>)</b> |
| 15                                                          |    | Recovery lectures, mentorship,<br>deliverables, etc.                                                                    |      |            |               |            |                                                                                                                            |       |          |
| 16<br>17<br>18                                              |    | Exam preparation UPON REQUEST ar<br>Evaluation                                                                          | nd   |            |               |            |                                                                                                                            | 3     | 12       |
| Subtotal 2                                                  |    |                                                                                                                         |      |            |               |            |                                                                                                                            |       | 12       |
| <b>Total 2</b> (Class and working hours between15-18 weeks) |    |                                                                                                                         |      |            |               |            |                                                                                                                            |       |          |
| TOTAL (Total 1 + Total 2. <u>180 hours max.</u> )           |    |                                                                                                                         |      |            |               |            |                                                                                                                            | 150   |          |