COURSE: PHYSICS I
 DEGREE: MECHANICAL ENGINEERING

YEAR: 1st
TERM: 1st

WEEKLY PROGRAMMING								
WEEK	SESSION	DESCRIPTION	GROUPS		LABORATORY	WEEKLY PROGRAMMING FOR STUDENT		
			LECTURE	SEMINAR	$\begin{aligned} & \hline \text { 4.SBO1 } \\ & \text { 4.SBO2 } \\ & \text { 4.SB03 } \end{aligned}$	DESCRIPTION	CLASS HOURS	HOMEWO RK HOURS Maximum 7 H
1	1	Kinematics of a particle. Position, velocity, and acceleration vectors; trajectory equation. Intrinsic coordinates: Tangential and normal components.	X			- Reading in advance of the corresponding book chapters. - Study and personal work on the lecture.	1.66	6
1	2			X		- Solve the proposed exercises. - Participation in discussions and activities.	1.66	
2	3	Kinematics of a particle. Circular motion. Frames of reference.	X			- Reading in advance of the corresponding book chapters. - Study and personal work on the lecture.	1.66	6
2	4			X		- Solve the proposed exercises. - Participation in discussions and activities.	1.66	
3	5	Dynamics of a particle. Newton's Laws of motion. Free-body diagrams. Examples of forces: weight, elastic force, normal force, centripetal force, string tension, friction force.	X			- Reading in advance of the corresponding book chapters. - Study and personal work on the lecture.	1.66	6
3	6			X		- Solve the proposed exercises. - Participation in discussions and activities.	1.66	
4	7	Dynamics of a particle. Principle of linear impulse and momentum. Angular momentum and moment of a force. Static equilibrium.	X			- Reading in advance of the corresponding book chapters. - Study and personal work on the lecture.	1.66	6
4	8			X		- Solve the proposed exercises. - Participation in discussions and activities.	1.66	
5	9	Conservative and no-conservative forces. Scalar and vectorial functions. Principle of work and energy. Kinetic energy. Conservative forces and potential energy. Conservation of mechanical energy.	X			- Reading in advance of the corresponding book chapters. - Study and personal work on the lecture.	1.66	6
5	10			X		- Solve the proposed exercises.	1.66	

12	24			X		- Solve the proposed exercises. - Participation in discussions and activities.	1.66	
13	25	Entropy. Clausius theorem. T-S diagram. Reversible and irreversible processes.	X			- Reading in advance of the corresponding book chapters. - Study and personal work on the lecture.	1.66	4
14	26	Errors and uncertainty in Physics measurements. (${ }^{*}$)			X	- Reading of the guideline document. - Analysis of results. - Preparation of the report.	1.665	3
14	27	Mechanics phenomena. (*)			X	- Reading of the guideline document. - Data acquisition. - Analysis of results. - Preparation of the report.	1.66	3
14	28	Mechanics phenomena. (*)			X	- Reading of the guideline document. - Data acquisition. - Analysis of results. - Preparation of the report.	1.665	3
	29	Thermodynamics phenomena. (*)			X	- Reading of the guideline document. - Data acquisition. - Analysis of results. - Preparation of the report.	1.665	3
SUBTOTAL							48.33	94=136.33
15		Tutorials, Handing in, etc					1.66	0
16-18		Assessment					0	12
TOTAL							150	

(*) The schedule of laboratory sessions is tentative and will be confirmed by the course coordinator.

