

COURSE: WIRELESS TRANSMISSION AND PROPAGATION

DEGREE: BACHELOR in COMMUNICATION SYSTEM ENGINEERING YEAR: 4th SEMESTER: 1st

WEEKLY ORGANIZATION										
N EE	SESSION	DESCRIPTION OF THE SESSION		GROUP (with X)		Indicate YES/NO if it is a session	Student work			
			LECTURE	SMALL GROUP	(computer room, laboratory, etc.)	with two teachers	DESCRIPTION	Class hours	Student workload per week (Max. 7hours)	
1	1	Introduction to the course Definition of antenna and its key role in the radiocommunication systems Unit 1: Antenna main parameters: Radiation pattern Directivity	X		NO	NO	Revision of some concepts already seen in Electromagnetic Fields course	1,66		
1	2	Gain Efficiency Bandwidth Effective area and Friis equation		х	NO	NO	Self-study to prepare for the test	1,66	4	

		Unit 2: Wire antennas							
2	3	 Calculation of the field radiated by a linear current: vector potential Short dipole. Radiation zones 	х		NO	NO	Revision of the theory seen in the lectures and resolution of basic exercises and practical examples	1,66	
2	4	Resolution of Problems		х	NO	NO	Revision of the theory seen in the lectures. Examples of calculation of antenna parameters	1,66	5
3	5	Small loop Dipole with any lenght and uniform and sinusoidal current	x		NO	NO	Self-study to prepare for the test	1,66	
3	6	Unit 2: Wire antennasResolution of Problems		x	NO	NO	Resolution of proposed problems	1,66	5
4	7	Unit 2: Wire antennas Travelling wave antennas	x		NO	NO	Revision of the theory seen in the lectures. Resolution of examples of radiation patterns for antennas with different lenghts	1,66	
4	8	Lab 1 Calculation of radiation pattern of wire antennas with MATLAB		х	Computer rooms from UCIIIM	SI	The radiation patterns of different wire antennas will be calculated and represented by using the tool MATLAB	1,66	6
5	9	Practical considerations: monopole antenna, folded dipole	х		NO	NO	Revision of the theory seen in the lectures	1,66	
5	10	Unit 2: Wire antennas Resolution of Problems		x	NO	NO	Resolution of proposed problems	1,66	6
6	11	Individual Test (Units 1 and 2)	х		NO	NO	Self-study to prepare for the test	1,66	
6	12	Superposition: Array Factor Uniform Arrays		x	NO	NO	Revision of the theory seen in the lectures	1,66	5
7	13	Progressive phase: electronic scanning arrays Grating lobes	х		NO	NO	Revision of the theory seen in the lectures. Resolution of exercices of arrays with different distances interelements and different number of elements	1,66	
7	14	Arrays with non uniform amplitudes Binomial Array		X	NO	NO	Revision of the theory seen in the lectures	1,66	6

	4.5	Unit 3: Arrays						1.66	
8	15	Array sinthesis: Schelkunoff circle	Х		NO	NO	Revision of the theory seen in the lectures . Resolution of exercises with phased arrays	1,66	
8	16	Lab 2. Calculation of radiation pattern fo arrays with MATLAB		х	Computer rooms from UCIIIM	SI	The radiation patterns of different arrays antennas will be calculated and represented with the mathematical tool MATLAB	1,66	6
9	17	Unit 3: ArraysPlannar arrays	x		NO	NO	Revisión de la teoría dada en clase. Resolution of exercices of array synthesis by using Schelkunoff methodology	1,66	
	10	Unit 3: Arrays					J.	4.66	
9	18	Resolution of Problems		Х	NO	NO	Resolution of proposed problems	1,66	5
10	19	Individual test (Unit 3)	х		NO	NO	Self-study to prepare for the test	1,66	
		Unit 4: Aperture Antennas							
10	20	EquivalenteMagnetic Vector Potential						1,66	
		-		Х	NO	NO	Revision of the theory seen in the lectures		5
11	21	Onit 4: Aperture Antennas Aperture field distributions	X		NO	NO	Revision of the theory seen in the lectures. Resolution of examples of calculations of radiation of aperture antennas	1,66	
11	22	Unit 4: Aperture AntennasHorns						1,66	
		Graphs for calculation of radiation pattern Unit 4: Aperture Antennas		Х	NO	NO	Revision of the theory seen in the lectures		6
12	23	Examples of designs Reflectors: types.	X		NO	NO	Revision of the theory seen in the lectures. Resolution of calculation of horn radiation patterns	1,66	
12	24	Resolution of Problems		Х	NO	NO	Resolution of proposed problems	1,66	6
13	25	Reflectors: efficiencies Lenses	X		NO	NO	Revision of the theory seen in the lectures	1,66	
13	26	Lab 3. Calculation of radiation pattern of aperture antennas with MATLAB		х	Computer rooms from UCIIIM	SI	The radiation patterns of different aperture antennas will be calculated using the mathematical tool MATLAB	1,66	5
14	27	Individual test (Unit 4)	х		NO	NO	Self-study to prepare for the test	1,66	6

		COMMON TUTORSHIP: revision of the main concepts in the course							
14	28	and resolution of exercises						1,66	
				Х	NO	NO	Revision of the main concepts of the course		
		Lab 4. Antenna measurement: measurement of a	ntenna						
12	29	impedance with network analyzer and measurement of radiation						1,66	
		pattern.			Laboratories			1,00	_
				Х	of Dpto. TSC	SI	Introduction to antenna measurement in a lab		2
Subtotal 1							48,33	78	
			Total 1 (Teaching ho	urs and stu	ident work in v	veeks 1-14)			
15		Making-up classes, delivery of homework, office hours						1.66	
16		Preparing the evaluation and evaluation itself							
17								3	
18									25
Subtotal 2								3	
Total 2 (Teaching hours and student work in weeks 15-18)							26.66		
TOTAL (Total 1 + Total 2. Max 180 hours)							153		