Universidad
Carlos III de Madrid
www.uc3m.es

COURSE: Linear Algebra

DEGREE: Degree in Telematics Engineering	YEAR: 1	TERM: 1

The course has 28 lectures distributed along 14 weeks + an extra theoretical lecture on complex numbers

WEEKLY PLANNING								
$\begin{aligned} & \sum_{\text {而 }} \end{aligned}$	䀜	DESCRIPTION	GROUPS (mark X)		Special room for session (computer classroom, audio-visual classroom...)	WEEKLY PROGRAMMING FOR STUDENT		
			$\begin{array}{\|l\|l\|l\|l\|l\|} \hline \text { LECTU } \\ \text { RES } \end{array}$	$\begin{array}{\|l\|l} \hline \text { SEMIN } \\ \text { ARS } \end{array}$		DESCRIPTION	CLASS HOURS	HOMEWORK HOURS (Max. 7h week)
1	1	Systems of linear equations (Lay 1.1, see Notes at the end) - Solution of a linear system - Matrix notation - Solving a linear system - Elementary row operations - Row equivalence Row reduction and echelon form (Lay 1.2)	X			Study of the book (*1, see Notes at the end)	1,66	7

		- Spanned subspace, spanning set - Kernel and column space of a matrix (Lay 2.8, 4.2) - Relationship of the kernel with an homogeneous system - Parametric equations for the kernel					
7	14	Selected exercises (*2)		X	Odd exercises. Compare with solutions (*3)	1,66	
8	15	Basis in R^{n} and in subspaces (Lay $2.9,4.3$) - Spanning set theorem - Linear dependence relations in the columns of a matrix - Basis for Col A and Nul A Coordinate systems (Lay 2.9, 4.4) - Coordinate mapping as a bijection	X		Study of the book (*1)	1,66	7
8	16	Selected exercises (*2)		X	Odd exercises. Compare with solutions (*3)	1,66	
9	17	Dimension of a vector space (Lay 2.9, 4.5) - Dimension theorem - Basis theorem - Dimensions of Nul A and Col A Rank (Lay 4.6) - Rank theorem Change of basis (Lay 4.7) - Change of basis matrix	X		Study of the book (*1)	1,66	7
9	18	Test on chapters 2,3 and complex numbers. Selected exercises (*2)		X	Odd exercises. Compare with solutions (*3)	1,66	
10	19	Eigenvalues and eigenvectors (Lay 5.1)	X		Study of the book (*1)	1,66	7

		- Linear independence of eigenvectors. - Eigenspaces. The characteristic equation (Lay 5.2) - Relationship with invertibility - Similarity invariance. Matrix diagonalization (Lay 5.3) - Fundamental theorem - Diagonalization method						
10	20	Selected exercises (*2)		X		Odd exercises. Compare with solutions (*3)	1,66	
11	21	Scalar product, norm and orthogonality (Lay 6.1) - Distance - Orthogonal complement Orthogonal sets (Lay 6.2) - Linear independence - Orthogonal and orthonormal basis - Coordinates in orthogonal basis - Orthogonal matrices	X			Study of the book (*1)	1,66	7
11	22	Selected exercises (*2)		X		Odd exercises. Compare with solutions (*3)	1,66	
12	23	Orthogonal projections (Lay 6.3) - Orthogonal decomposition theorem - Best approximation theorem - Orthogonal projection matrix	X			Study of the book (*1)	1,66	7
12	24	Selected exercises (*2)		X		Odd exercises. Compare with solutions (*3)	1,66	
13	25	Gram-Schmidt method (Lay 6.4) QR factorization (Lay 6.4)	X			Study of the book (*1)	1,66	7

Notes:
(Lay 1.3) Section of D. C. Lay's book containing the material covered in the corresponding session.
(*1)Study the corresponding sessions in D. C. Lay's book.
(*2)Selected exercises from D. C. Lay's book corresponding to the previous lecture in large group.
(*3)Do some of the odd exercises in D. C. Lay's book corresponding to the previous lecture in large group and compare with the solutions in the book.

