| COURSE NAME: DATA | STRUCTURES AND ALGORITHMS, | GROUP 89M | |-------------------|-----------------------------|--------------| | COUNSE NAME: DATA | JINOCIONES AND ALGONITHING, | 011001 03111 | YEAR: 1 SEMESTER: 2 **DEGREE: SCIENCE AND DATA ENGINEERING** | | | | | | 0 - 1111 - | | | | | | |-----------------|--------|---|------------------------|-------|--|---------------------------------|--|-------------|--------------------------------------|--| | WEEKLY SCHEDULE | | | | | | | | | | | | SEMANA | NĢISƏS | SESSION CONTENT DESCRIPTION | GROUP
(mark with X) | | Mark if it is a
space
different from | Say YES/NO
if the
session | WEEKLY WORK TO BE DONE BY THE STUDENT | | | | | VA | Z | | BIG | SMALL | the classroom | needs two
professors | DESCRIPTION | CLASS HOURS | WORK HOURS
(Max. 7h in a
week) | | | 1 | | Problem about TAD Statistics | | x | Computers room | | Problem about TAD Statistics | 1,66 | 2 | | | 1 | | Presentation and course goals. Module 1. Introduction to Object Oriented Programming. How to specify and implement an abstract data type. Examples: ADT Date, ADT Complex number | х | | | | Work on solved problems about ADTs. Solutions available on Aula Global Individual work on ADT List | 1,66 | 7 | | | 1 | | Define and Implement Polynomial ADT to be performed for the class. Explain the List ADT to be solved as individual work for | | х | Computers room | | with arrays | 1,66 | | | | | the week. The implementation | | | | | | | | |---|--|---|---|----------------|---|--|------|---| | | should be based on arrays. | | | | | | | | | 2 | Module 2: Lesson 2: Linear TADs. Stacks and Queues. ADT Linear Static vs dinamyc SNode class. Stack ADT. Queue ADT | x | | | | queues. | 1,66 | 7 | | | Design and implementation of
linear ADT problems (in
particular stacks and queues) Explain the problem about
balanced parenthesis. | | х | Computers room | • | | 1,66 | | | | Module 2: Linear TADs: single linked lists | x | | | • | Solution delivery for balanced parenthesis through Aula Global. Work on single linked lists Individual work on the implementation of a circular single list. | 1,66 | 7 | | 3 | Work on methods
implementations for single
linked lists Explain how to implement a
circular single list. | | х | Computers room | • | | 1,66 | | | | Module 2: Linear TADs: doubly linked list | х | | | | Solution delivery for the circular single list through Aula Global Work on doubly linked list. Individual work: extended version of DList. | 1,66 | 7 | | 4 | Work on methods
implementations for doubly
linked lists Explain the individual work for
this week: a sort method for a
doubly linked list of integers | | х | Computers room | | | 1,66 | | | 5 | Module 3: Algorithms I. Complexity. Temporal and spacial complexity. Function T(n). BigO Complexity orders Modulo 4. Algorithms II. | x | | | • | Solution delivery for the sort method of a doubly linked list class. Individual work: analysis of linear data structures methods | 1,66 | 7 | | | Recursion. | | | | | | | |----|---|---|---|----------------|--|------|---| | | Work on and complexity and recursion problems. | | х | Computers room | | 1,66 | | | 6 | Module 4: Algorithms II. Recursion Examples of recursion: factorial, Fibonacci, mcd, russian product, etc. | X | | | Work on recursion and for first partial exam. | 1,66 | 7 | | | Work on recursion and for first
partial exam.Resolve previous exams | | x | Computers room | | 1,66 | | | | First partial exam: Linear ADTs +
recursion + complexity | Х | | | | 1,66 | | | 7 | Exam resolution.Lab case introduction | | x | Computers room | Work on complexity analysisWork for first partial exam. | 1,66 | 7 | | 8 | Module 5: Trees. Basic
concepts. Traverses. Definition
of BST (Binary search trees) | | | | Work for partial exam. Work on lab case | 1,66 | 7 | | | Work on treesWork on lab case | | х | Computers room | | 1,66 | | | | | | | | | | | | 9 | Module 5: Binary search trees
(BST): insert, remove, find
methods. | x | | | trees • Work on lab case | 1,66 | 7 | | | Work on the implementation of
BST and lab case | | х | Computer room | | 1,66 | | | 10 | Module 5: Balanced Trees | x | | | Work on exercises about treesWork on lab case | 1,66 | | | | Work on balanced trees and lab case | | х | Computers room | Work on exercises about treesWork on lab case | 1,66 | 7 | | 11 | Module 6: GraphsBasic concepts | Х | | | Work on exercises about trees | 1,66 | 7 | | | Adyacency matrix.Adyacency list | | | | | Work on lab case | | | | |--|--|------------------------|-----------|-----------------|--------------|--|--------|--------|--| | | Work on graphs and lab case | | х | Computers room | | | 1,66 | | | | 13 | Module 6: Graphs Depth-first and breadth-first search Dijkstra's algorithm | x | | | | Work on graphsWork on lab case presentation | 1,66 | 7 | | | | Work on graphsWork on lab case. | | Х | Computers room | | | 1,66 | | | | 13 | Lab case presentation | | х | Computers room | YES | | 1,66 | 5 | | | 14 | Module 7: Algorithms III. Divide and conquer: Dichotomic search, quick sort, merge sort. Algorithmic strategies: an overview | x | | | | Work on final exam | 1,66 | 5 | | | | | | | | | Subtotal 1 | 44,82 | 96 | | | | т | otal 1 (Face to face a | nd work h | ours for a stud | ent in week: | s 1 to 14) | 140,82 | | | | 15 | Tutored session | | | | | | 2 | | | | 16 | | | | | | | | | | | 17 | Evaluation preparation and eva | luation | | | | | 3 | | | | 18 | | | | | | | | 20 | | | | | | | | | Subtotal 2 | 3 | 22 | | | Total 2 (Face to face and work hours for a student in weeks 15 to 18) | | | | | | | | 25 | | | TOTAL (Total 1 + Total 2. 180 hours max.) | | | | | | | | 165,82 | |