MATHEMATICS. MASTER IN ECONOMICS. WORK SYLLABUS

WEEK	SESSION	CONTENTS
1	1	Topic 1. Linear Algebra. Matrices. Operations with matrices. Transpose matrix. Inverse matrix. Elementary transformations of matrices. Equivalent matrices. Echelon matrix. Rank of a matrix by computing an equivalent echelon matrix. Computation of the inverse matrix by applying Gauss-Jordan method. Short review of determinants.
	2	Topic 1. Linear Algebra. Introduction to linear systems. Matricial expression of a linear system. Augmented matrix. Rouché-Fröbenius Theorem. Gauss technique to solve a linear system. Cramer rule. Exercises to classify linear systems depending on one or more parameters.
2	1	Topic 1. Linear Algebra. Similar matrices. Diagonalizable matrix. Eigenvalues and eigenvectors. Characteristic polynomial. Computation of eigenvalues and eigenvectors. Geometric and algebraic multiplicity of an eigenvalue. Characterization of diagonalizable matrices. Illustrative exercises.
	2	Topic 1. Linear Algebra. Orthogonal matrix. Similar-congruent matrices. Characterization of symmetric matrices by means of the existence of a similar-congruent diagonal matrix. Gram-Schmidt orthogonalization method to compute orthogonal eigenvectors associated to the same eigenvalue. Exercises about diagonalization of matrices.
3	1	Topic 1. Linear Algebra. Quadratic forms. Introduction. Associated symmetric matrix. Types of quadratic forms. Classification of a quadratic form by means of the sign of the eigenvalues of the associated symmetric matrix. Classification of a quadratic form by means of Jacobi diagonalization.
	2	Topic 1. Linear Algebra. Exercises about quadratic forms.
4	1	Topic 2. The Euclidean Space Rⁿ. Scalar product of two vectors. Norm of a vector. Angle between two vectors. Polar coordinates. Topology in R ⁿ : open and closed balls. Interior, boundary and closure points of a set. Open and closed sets. Bounded and compact sets. Convex sets.
	2	TEST 1: Topic 1 Topic 2. The Euclidean Space R ⁿ . Introduction to functions in several
		variables. Level surfaces/curves. Illustrative examples.
5	1	Topic 2. The Euclidean Space Rⁿ. Limit of a function of several variables. Iterated limits. Limits through paths. Sandwich criterion to compute a limit.
		Exercises to compute limits.

	2	Topic 2. The Euclidean Space Rⁿ. Continuous functions. Properties. Global and local extrema of a function. Weierstrass Theorem. Computation of global extrema by using level curves.
		Exercises to study the continuity of a function and to compute global extrema by using level curves.
6	1	Topic 3. Differential Calculus of Several Variables. Part I. Directional derivatives. Partial derivatives. Geometric interpretation. Gradient. Differentiable function. Differential function. Main properties and results, and geometric interpretation of differentiable functions. Tangent plane.
	2	Topic 3. Differential Calculus of Several Variables. Part I. Exercises to compute directional derivatives and to study the differentiability of a function.
7	1	Topic 3. Differential Calculus of Several Variables. Part I. Direction of maximum increasing of a differentiable function. Chain rule. Related exercises.
	2	Topic 3. Differential Calculus of Several Variables. Part I. Exercises about the topic.
8	1	TEST 2: Topics 2 and 3
		Topic 4. Differential Calculus of Several Variables. Part II. Second order derivatives. Hessian matrix.
	2	Topic 4. Differential Calculus of Several Variables. Part II. Taylor approximation of first and second order. Implicit function theorem. Related exercices.
9	1	Topic 4. Differential Calculus of Several Variables. Part II. Exercises about the topic.
	2	Topic 5. Unconstrained Optimization Problems and Convex Analysis. Relative extrema of a function. Necessary and sufficient conditions for relative extrema (first and second order conditions).Exercises to compute the relative extrema of a function.
10	1	Topic 5. Unconstrained Optimization Problems and Convex Analysis. Convex and concave functions. Characterization of convex/concave functions in terms of the signature of the Hessian matrix. Characterization of the global minimum (resp. maximum) of a convex (resp. concave) differentiable function.
		Related exercises.
	2	Topic5. UnconstrainedOptimizationProblemsandConvexAnalysis.Exercises about the topic.
		TEST 3: Topics 4 and 5
11	1	Topic 6. Constrained Optimization Problems. General definition of a constrained optimization problem. Optimization problems with

		equality constraints. Lagrange function. Lagrange multipliers. Necessary and sufficient conditions for the solutions of a constrained optimization problem. Illustrative exercises.
	2	Topic 6. Constrained Optimization Problems. Exercises to solve an optimization problem with equality constraints.
12	1	Topic 6. Constrained Optimization Problems. Optimization problems with inequality constraints. Active restrictions. Constraint qualifications. Kuhn-Tucker Theorem.
	2	Topic 6. Constrained Optimization Problems. Exercises to solve an optimization problem with inequality constraints.
13	1	Topic 7. Difference Equations. Parts 7.1 and 7.2
	2	Topic 7. Difference Equations. Exercises.
14	1	Topic 7. Difference Equations. Parts 7.3 and 7.4
	2	Topic 7. Difference Equations. Exercises.