

COURSE: Control Engineering		
DEGREE: Biomedical Engineering	YEAR:	TERM: 1

La asignatura tiene 14 sesiones que se distribuyen a lo largo de 7 semanas. Los dos laboratorios puede situarse en cualquiera de estas ellas.

	WEEKLY PLANNING												
<	SES	DESCRIPTION	GROUPS (mark X)		SPECIAL ROOM FOR SESSION	ROOM FOR Indicate	WEEKLY PROGRAMMING FOR STUDENT						
WEEK	SESSION		LECTURES	SEMINARS	(Computer class room, audio-visual class room)	session needs 2 teachers	DESCRIPTION	CLASS HOURS	HOMEWORK HOURS (Max. 7h week)				
1	1	Presentation of the subject Introduction to the signals and systems 1. Concept of Signal 2. Type of Signals 3. Introduction to the Systems 4. Type of Systems Laplace Transforms: 1. Concept of of Laplace Transforms 2. Properties of the Laplace Transforms 3. Utility of the Laplace Transforms 4. Table of Laplace Transforms	X					1,6					
1	2	Mathematical Modelling of physical systems 1 Concept of Model of a System 2 Modelling of Mechanical Systems	х					1,6	1,6				

		3 Modelling of Electrical Systems					
		4 Modelling of Electromechanical Systems					
		5 Modelling of Hydraulic Systems					
		6 Modelling of Chemical Systems					
		7 Modelling of Thermal Systems					
		Transfer Function.					
		1. Transfer function					
		2. Linear systems of constant coefficients					
		3 Systems Linealization. Concept of point of balance					
		4. Transfer function for systems of continuous time					
		5. Transfer function and impulsional response					
		Transfer Function and Linealization.					
		1. Linealization. Concept of equilibrium point					
2	3	2. Transfer function of linarized systems of				1,6	
		continuous time	Х				
		Graphical models of representation of systems and					1
		obtaining of the Transfer Function					
2	4	1. Block Diagram				1,6	
		2. Operations with blocks	Χ				1,6
		Introduction to the Analysis of Systems in the time					
		domain					
		1. Introduction to the time domain analysis					
		2. Standard signals of input					
		3. Relation between the time response and the					
3	5	situation of poles and zero in continuous time				1,6	
3		systems				1,0	
		4. Concept of dominant pole					
		5. Equivalent systems of reduced order					
		6. Additional poles and zeros					
		7. Algebraic methods for the stability analysis: Routh					
		criterion.	Χ				
		Temporary analysis of the systems of continuous					
		time of first order					
		1. Systems of first order					
3	6	2. Impulsional answer of systems of first order				1,6	
		3. Answer before signal step of a system of first order					
		4. Answer before signal incline of a system of first					
		order	X				1,6

			1 1		1	1	I	
		Temporary analysis of the systems of continuous						
		time of second order						
		1. Systems of second order						
		2. Classification of the systems of second order						
		3. Answer before signals step and the systems of						
		second order						
		4. Parameters that characterize the systems of						
		second order						
		5. Impulsional answer and before incline of systems						
		of second order						
		Introduction to the control systems						
		 Static analysis of the feedback systems 						
		Concept of error in permanent regime						
		3. Concepts of gain of position, speed and						
		acceleration						
		4. Type of a system						
4	7	5. Relation between type and gains of a system					1,6	
							_,,,	
		-Calculation of the error in the feedback systems						
		1. Calculation of errors in systems with unitary						
		feedback						
		2. Calculation of errors in systems with nonunitary						
		feedback						
		3. Errors dues to disturbances	Х					
		Dynamic analysis of feedback systems						
		 Concept of Root Locus Criteria of the module and the argument 						
4	8	3. Rules for the drawn up one of the Root Locus					1,6	
4	0	4. Inverse Root Locus					1,0	
		5. Rules for the layout of the Inverse Root Locus						
		6. Widespread Root Locus	x					1,6
		1. Basic Control Actions	,,					
		2. PD and PI Controllers						
		3. PID Controllers						
5	9	4. Problems of implementation of PID Controllers					1,6	
		5. Modifications to the PID control: other settings					,-	
		6. Basic design principles temporal						
		7. Performance specifications on the Root Locus	Х					1,6

		8. Time domain design of regulators based on the					
		Root Locus					
		Introduction to the continuous system analysis in the					1
		frequency domain:					
		1. Frequency response of a system of continuous					
		time					
		2. Types of graphical representations					
		3. Diagram of Bode. Meaning and applications					
		Polar diagram. Meaning and applications					
		5. Diagram magnitude-phase. Meaning and					
		applications					
5	10	арриосто				1,6	
		Bode Diagrams:				_,_	
		Concept of asymptotic Diagram of Bode					
		2. Diagram of Bode of a constant					
		3. Diagram of Bode of poles and zeros in the origin					
		4. Diagram of Bode of poles and zeros real negatives					
		5. Diagram of Bode of poles and zeros real positives					
		6. Diagram of Bode of negative complex poles					
		7. Diagram of Bode of imaginary poles					
		8. Diagram of a system: set of poles and zero	Χ				
		Frequency analysis of feedback systems					
		Nyquist criterion:					
		1. Introduction to frequency analysis of feedback					
		systems					
		2. Cauchy argument Principle					
		3. Introduction to the Nyquist criterion					
		4. Calculation of Nyquist Path					
6	11	5. Application of the Nyquist				1,6	
						_,-	
		Relative stability:					
		1. Relative stability					
		2. Margin and phase margin					
		3. Relative stability in the Bode diagram					
		4. Relative stability in the magnitude-phase diagram					
		5. Relationship between the parameters of relative					
-		stability and transient response	Х				
6	12	Frequency design of PID controllers	,			1,6	1.6
		1. Frequency behavior of a PID controller	Х				1,6

			1	1	1	1			
		2 Basic design principles frequency							
		Relationship between time and frequency							
		characteristics							
		4. Frequency Design Rules							
		5. Lead and Lag Compensation							
		Lab Practice 1: Continuous Systems Temporary Study 1st							
		and 2nd Order.							
		We performed a timing analysis for systems of first and							
		second order, in its response to a step input. As a first							
		order system uses a DC motor whose angular velocity depends on the voltage. As a second-order system will be							
		studied again the same engine but with a unity feedback							
		of position. The student must complete the engine							
		identification obtaining the values of static gain and time							
7	13	constant. This is done for three different gains. It should						1,6	
		also identify the block encoder (position sensor) with						,	
		which you can then reduce the block diagram of the							
		second-order system. It is estimated, theoretically, the							
		system response for a step, determining the parameters							
		of second-order system (overshoot, settling time and							
		peak time) for the three amplifier gains. You should verify with the Simulink simulation results and experimentally							
		test them finally seeing the potential differences between							
		the theoretical model and real.		Х	Lab				
		Lab Practice 2: Basic Frequential Study of Continuous							
		Systems 1st and 2nd Order.							
		It intends to perform a frequency analysis for systems of							
		first and second order, through analysis of their response							
		to a sinusoidal input of amplitude A and frequency							
		variable. As a first order system uses the dc motor used in past practice. The motor drive signal is a sine wave of							
7	14	fixed amplitude and variable frequency which is obtained						1,6	
		through a signal generator. The student must obtain							
		experimentally the Bode plots (amplitude and phase) for							
		the first-order system (engine) when the entry is							
		submitted a 2V sine signal amplitude and frequency							
		variable gain for three different cases. You must also							
		obtain asymptotic Bode diagrams for the previous case.		X	Lab				1,6
							Subtotal 1	23,33	11,2
		Total 1 (Hours	of class p	lus studen	t homeworl	hours betw	veen weeks 1-7)	33,5	53
								•	
8		Tutorials, handing in, etc							
9		Assessment						3	20
		/ ioocoonicit			1	1		,	20

10											
11											
Subtotal 2								3	20		
	Total 2 (Hours of class plus student homework hours between weeks 8-11)							2	2		

TOTAL (Total 1 + Total 2. <u>Maximum 90 horas</u>)	56,33	
---	-------	--

(*) In EPS are given an additional 6 hours of completary teaching along two sessions.