uc3m Universidad Carlos III de Madrid

COURSE: CALCULUS II

DEGREE: BACHELOR IN BIOMEDICAL ENGINEERING

ACADEMIC YEAR: 2020-2021
TERM: 2
28 sessions along 14 weeks
WEEKLY PLANNING

				WEEKLY PLA
$\begin{aligned} & \sum_{\text {n }}^{\text {n }} \end{aligned}$	$\begin{aligned} & \text { 资 } \\ & \frac{0}{2} \\ & \end{aligned}$	DESCRIPTION	GROUPS (mark X)	
			LECTURES	SEminars
1	4/02	CHAPTER 1: DIFFERENTIAL CALCULUS IN SEVERAL VARIABLES $1.1 \mathrm{R}^{\mathrm{n}}$ as an Euclidean space; topology 1.2 Functions of n variables - Functions, graphs, and level sets	X	
1	$\begin{gathered} 5 / 02 \\ \& \\ 10 / 02 \end{gathered}$	(*) Discussion of selected exercises		X
2	11/02	1.3 Limits and Continuity	X	
2	$\begin{gathered} 12 / 02 \\ \& \\ 17 / 02 \end{gathered}$	(*) Discussion of selected exercises		X
3	18/02	1.4 Differentiability - Partial derivatives - Derivative; Jacobian matrix	X	
3	$\begin{gathered} 19 / 02 \\ \& \\ 24 / 02 \end{gathered}$	$\left(^{*}\right)$ Discussion of selected exercises		X
4	25/02	- Properties of the derivative - Chain rule - Directional derivatives; gradient vector	X	

WEEKLY PROGRAMMING FOR STUDENT
RS

DESCRIPTION	CLASS HOURS	HOMEWORK HOURS (Max. 7h week)
Sections 14.1 and 16.2 [WHT] and/or sections $1.5,2.1,2.2[\mathrm{MT}]$		
	1,67	

Sections 14.3-14.6 [WHT] and/or sections 2.5,
2.6 [MT]

1,67

uc3m

4	$\begin{gathered} 26 / 02 \\ \& \\ 3 / 03 \\ \hline \end{gathered}$	(*) Discussion of selected exercises		X	${ }^{(* *)}$ Problem solving for selected exercises	1,67	
5	4/03	CHAPTER 2: LOCAL PROPERTIES OF FUNCTIONS 2.1 Higher order derivatives - Iterated derivatives; equality of mixed partials - Differential operators: divergence, curl, Laplacian	X		Sections 16.4, 16.7, 16.8 [WHT] and/or sections 3.1, 3.2 [MT]	1,67	6,3
5	$\begin{gathered} 5 / 03 \\ \& \\ 10 / 03 \end{gathered}$	(*) Discussion of selected exercises		X	(**) Problem solving for selected exercises	1,67	
6	11/03	- Taylor polynomial; Hessian matrix 2.2 Optimization - Local extrema - Absolute/global extrema	X		Sections 14.7, 14.9 [WHT] and/or sections 3.2, 3.3 [MT]	1,67	6,3
6	$\begin{gathered} \hline 12 / 03 \\ \& \\ 17 / 03 \end{gathered}$	(*) Discussion of selected exercises		X	(**) Problem solving for selected exercises	1,67	
7	18/03	- Free optimization problems - Constrained optimization: Lagrange multipliers	X		Sections 14.7, 14.9 [WHT] and/or section 3.3, 3.4 [MT]	1,67	
7	$\begin{array}{\|c} \hline 22 / 03 \\ \& \\ 24 / 03 \\ \hline \end{array}$	First Mid term Exam		X		1,67	6,3
8	25(03	CHAPTER 3: INTEGRAL CALCULUS ON R ${ }^{\text {n }}$ 3.1 Double and triple integrals - Iterated integrals - Cavalieri's principle - Integrals over rectangular regions; Fubini's theorem	X		Sections 15.1, 15.5 [WHT] and/or sections 5.1-5.2 [MT]	1,67	6,3
8	$\begin{gathered} \hline 26 / 03 \\ \& \\ 7 / 04 \\ \hline \end{gathered}$	(*) Discussion of selected exercises		X	(**) Problem solving for selected exercises	1,67	
9	8/04	- Arbitrary 2- and 3-dimensional regions Change in the order of integration 3.2 n-dimensional integrals	X		Sections 15.2, 15.3, 15.5 [WHT and/or sections 5.3-5.5 [MT]	1,67	6,3
9	$\begin{gathered} 9 / 04 \\ \& \\ 14 / 04 \end{gathered}$	(*) Discussion of selected exercises		X	(**) Problem solving for selected exercises	1,67	

uc3m | Universidad Carlos III de Madrid

10	15/04	3.3 Changes of variables and applications - Changes of variables; Jacobian - Polar, cylindrical, and spherical coordinates - Average; center of mass; moments of inertia	X		Sections 15.4, 15.6-15.8 [SHE] and/or sections 6.1-6.3 [MT]	1,67	6,3	
10	$\begin{gathered} 16 / 04 \\ \& \\ 21 / 04 \end{gathered}$	(*) Discussion of selected exercises		X	(**) Problem solving for selected exercises	1,67		
11	22/04	CHAPTER 4: INTEGRALS OVER CURVES AND SURFACES 4.1 Line integrals - Parametrized curves - Line integral - Conservative fields	X		Sections 16.1-16.3 [WHT] and/or sections 7.1, 7.2 [MT]	1,67	6,3	
11	$\begin{gathered} \hline 23 / 04 \\ \& \\ 28 / 04 \\ \hline \end{gathered}$	(*) Discussion of selected exercises		X	(**) Problem solving for selected exercises	1,67		
12	29/04	4.2 Surface integrals - Parametrized surfaces - Area of a Surface - Integrals of scalar functions and vector fields	X		Sections 16.5, 16.6 [WHT] and/or sections 7.3-7.6 [MT]	1,67	6,3	
12	$\begin{array}{\|c\|} \hline 30 / 04 \\ \& \\ 5 / 05 \\ \hline \end{array}$	Second Mid Term Exam		X		1,67		
13	6/05	4.3 Integral theorems of vector analysis - Planar case: Green's and divergence theorems - Stokes' theorem	X		Sections 16.4, 16.7 [WHT] and/or sections 8.1, 8.2 [MT]	1,67	6,3	
13	$\begin{array}{\|c} \hline 7 / 05 \\ \& \\ 12 / 05 \\ \hline \end{array}$	(*) Discussion of selected exercises		X	(**) Problem solving for selected exercises	1,67		
14	13/05	- Conservative fields - Gauss' theorem	X		Sections 16.7, 16.8 [WHT] and/or sections 8.3, 8.4 [MT]	1,67		
14	$\begin{array}{\|c} \hline 14 / 05 \\ \& \\ 19 / 05 \end{array}$	$\left(^{*}\right)$ Discussion of selected exercises		X	${ }^{* *}$) Problem solving for selected exercises	1,67		
Total 1 (Hours of class plus student homework hours between weeks 1-14) Subtotal 1							47	88
							135	

uc3m | Universidad Carlos III de Madrid

Notes:
[MT] Marsden and Tromba, "Vector Calculus", W. H. Freeman ($6^{\text {th }}$ edition, 2012)
[WHT] Weir, Hass and Thomas, "Thomas' Calculus", Wiley ($12^{\text {th }}$ edition, 2009)
(*) Discussion of selected exercises from the course collection that correspond to the previous lecture
(**) Problem solving for selected exercises from the course collection and sections of [MT], [WHT] that correspond to the previous lecture
(+) Lecture hours are always 1.67 (1.67 hours* 28 sessions $=46.76$ hours)

