

COURSE: Design of Analog and Digital Subsystems						
MASTER: ELECTRONIC SYSTEMS ENGINEERING AND APPLICATIONS	YEAR: 2014-15	TERM: 1st				

	WEEKLY PLANNING								
WEEK	SESSION	DESCRIPTION	GROUPS (mark X)		Special room for session (computer classroom,	WEEKLY PROGRAMMING FOR	WEEKLY PROGRAMMING FOR STUDENT		
	-		LECTURES	SEMINARS/ LAB ¹	audio-visual classroom)	DESCRIPTION	CLASS HOURS	HOMEWORK HOURS (Max. 7h week)	
1	1	Introduction. Fundamentals of Register-Transfer Level (RTL) design.	x			Get course material. Study lesson	1,5		
1	2	Design Evaluation and Optimization. Area and delay estimation. Design constraints.	x			Study lesson	1,5	4	
2	3	Design Evaluation and Optimization. Design optimization for area and performance	x			Study lesson	1,5		
2	4	Exercises of RTL design		x	COMPUTER ROOM	Exercises	1,5	5	
3	5	Design Evaluation and Optimization. Power estimation and optimization. Clocking issues	X			Study lesson	1,5	5	

3	6	Examples of design evaluation and optimization		x	COMPUTER ROOM	Exercises using computer tools	1,5	
4	7	Fundamentals of High-Level Synthesis	x			Study lesson	1,5	
4	8	High-Level Synthesis. Loops	x			Study lesson	1,5	5
5	9	High-Level Synthesis. Interfaces and memories	x			Study lesson Work on mid-term assignment	1,5	
5	10	Examples of High-Level Synthesis		x	COMPUTER ROOM	Study lesson Work on mid-term assignment	1,5	5
6	11	Exercises of High-Level Synthesis		x		Exercises using computer tools Work on mid-term assignment	1,5	
6	12	Exercises of High-Level Synthesis		x	COMPUTER ROOM	Exercises using computer tools Work on mid-term assignment	1,5	5
7	13	Introduction to Hardware/Software Codesign	x			Study lesson Prepare mid-term exam	1,5	
7	14	Mid-term Exam	x			Prepare mid-term exam	1,5	5
8	1	Active Filter synthesis I	x			Review of active filter synthesis methods, biquads, state variable, gyrators	1,5	5
8	2	Active Filter synthesis II	x			Effect of finite opamp gain, bandwidth. Gm- C filters	1,5	
9	3	Active Filter synthesis - Exercises		x		Desing example and simulation	1,5	5
9	4	Sample & Hold Circuits	x			MOS switches, S&H basics, charge injection, aperture time, exercises.	1,5	
10	5	Noise in electronic circuits I		x		Spectral Power density, Filtered Noise, Thermal, Flicker, Shot noise sources.	1,5	5

10	6	Noise in electronic circuits II	x		Noise models of semiconductors. Noise circuit analysis using SPICE. Noise in sampled data systems.	1,5	
11	7	Noise in electronic circuits - Exercises		x	Exercises and simulation	1,5	5
11	8	Switched capacitor circuits	x		Basic integrators, delaying- nondelying, 1 st and 2 nd order filters	1,5	
12	9	Switched capacitor circuits - Exercises		x	Transfer function calculation. Exercises	1,5	5
12	10	Data conversión circuits	x		Nyquist A/D and D/A converters	1,5	
13	11	Noise shaping techniques	x		Oversampling. Noise shaping. Sigma-delta A/D and D/A converters	1,5	5
13	12	Data conversión exercises		x	Exercises and simulation	1,5	
14	13	Time circuits and signal synthesis	x		Delay lines, Ring oscillators, Time to Digital Converters. Dual modulus synthesizers, DDS synthesizers.	1,5	5
14	14	Time circuits and signal synthesis - Exe	ercises x		Phase noise and jitter concepts . Exercises	1,5	
¹ A maximum of 1-2 lab sessions Subtotal 1					Subtotal 1	42	68
Total 1 (Hours of class plus student homework hours between weeks 1-7)						1:	10

1-14		Tutorials, handing in, etc					20
8		Assessment				6	14
					Subtotal	2 6	34
Total 2 (Hours of class plus student homework hours at week 8)						40	

TOTAL (Total 1 + Total 2)	150
TOTAL (Total 1 + Total 2)	150